Wird geladen....
Drücken und Halten zum Ziehen |
|||
Hier klicken, um zu schließen |
Frage 1 Bericht
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Antwortdetails
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Frage 2 Bericht
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Antwortdetails
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Frage 3 Bericht
Which process(es) is/are involved in the turning of starch iodide paper blue-black by chlorine gas?
Antwortdetails
The process involved in the turning of starch iodide paper blue-black by chlorine gas is option number 3: chlorine oxidizes the iodide ion to produce iodine which attacks the starch to give the blue-black color. When chlorine gas comes in contact with iodide ions on the starch iodide paper, it oxidizes the iodide ion to form iodine. The iodine that is produced in this reaction is then able to react with the starch present on the paper to form a blue-black complex. This blue-black complex is formed due to the arrangement of the starch molecules and the iodine atoms in a way that causes them to absorb light at a specific wavelength, giving the blue-black color. Therefore, the blue-black color that is observed on the starch iodide paper is due to the reaction between iodine and starch, which is made possible by the oxidation of iodide ions by chlorine gas.
Frage 4 Bericht
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Antwortdetails
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Frage 5 Bericht
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Antwortdetails
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Frage 6 Bericht
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Antwortdetails
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Frage 7 Bericht
A radioactive nucleus has a half-life of 20 years, starting with 100,000 particles, how many particles will be left exactly at the end of 40 years
Antwortdetails
The half-life of a radioactive nucleus is the time it takes for half of its particles to decay. This means that after 20 years, 100,000 particles will become 50,000 particles. After 40 years, we can find the number of particles remaining by counting the number of half-lives that have passed. Since 40 years is double the half-life of 20 years, this means that two half-lives have passed, so the number of particles will be halved twice. Starting with 100,000 particles: - After 1 half-life (20 years), there will be 50,000 particles remaining. - After 2 half-lives (40 years), there will be 25,000 particles remaining. So, exactly at the end of 40 years, there will be 25,000 particles remaining.
Frage 8 Bericht
In the reaction:
M + N → P
ΔH = +Q kJWhich of the following would increase the concentration of the product?
Antwortdetails
Increasing the temperature would increase the concentration of the product, P. The reaction rate, or the speed at which the reaction occurs, is influenced by temperature. An increase in temperature raises the kinetic energy of the reacting molecules, making it easier for them to collide and react. This leads to a higher rate of reaction and a higher concentration of the product, P. Adding a suitable catalyst can also increase the reaction rate, but it does not directly affect the concentration of the product. Increasing the concentration of P does not affect the reaction itself, but is a result of the reaction having taken place. Decreasing the temperature would slow down the reaction rate and reduce the concentration of the product.
Frage 9 Bericht
Hydrogen diffused through a porous plug
Antwortdetails
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Frage 10 Bericht
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Antwortdetails
Frage 11 Bericht
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Antwortdetails
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Frage 12 Bericht
The part of the total energy of a system that accounts for the useful work done in a system is known as
Antwortdetails
The part of the total energy of a system that accounts for the useful work done in a system is known as "Gibbs free energy". Gibbs free energy is a thermodynamic property that represents the amount of energy that can be converted into useful work in a system. It takes into account both the energy of the system and the entropy, or disorder, of the system. In other words, Gibbs free energy is a measure of the energy available to do work, taking into account the energy that is unavailable due to entropy. In simple terms, if a system has a high Gibbs free energy, it has a lot of energy available to do work, and if a system has a low Gibbs free energy, it has little energy available to do work.
Frage 13 Bericht
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Antwortdetails
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Frage 14 Bericht
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Antwortdetails
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Frage 15 Bericht
At 27°C, 58.5g of sodium chloride is present in 250cm3 of a solution. The solubility of sodium chloride at this temperature is?
(molar mass of sodium chloride = 111.0gmol−1 )
Antwortdetails
Given the Mass of the salt = 58.5g
Volume = 250 cm3
= 0.25 dm3
Mass concentration = MassVolume
= 58.50.25
= 234 gdm−3
Solubility (in moldm−3
= 234111
= 2.11 moldm−3
≊
2.0 moldm−3
Frage 16 Bericht
Which of the following conditions will most enhance the spontaneity of a reaction?
Antwortdetails
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Frage 17 Bericht
Sulphur exists in six forms in the solid state. This property is known as
Antwortdetails
The property of sulfur existing in six different forms in the solid-state is known as allotropy. Allotropy is a phenomenon where an element can exist in multiple forms, called allotropes, that have different physical and chemical properties but are composed of the same atoms. These different forms arise due to differences in the arrangement of atoms or molecules within the substance. In the case of sulfur, it can exist in multiple solid-state allotropes, including rhombic, monoclinic, and plastic sulfur, among others. Each of these allotropes has a different crystal structure, melting point, and other physical and chemical properties, even though they are all composed of sulfur atoms. Allotropy is a common phenomenon observed in many elements, including carbon, oxygen, and phosphorus, among others.
Frage 18 Bericht
A cell shorthand notation can be written as A / A+ // B2+ /B. The double slash in the notation represents the
Antwortdetails
The double slash in the cell shorthand notation represents the salt bridge. A salt bridge is a component of an electrochemical cell that connects the two half-cells and allows the flow of ions between them. It consists of an inert electrolyte solution (usually a salt) that is placed between the two half-cells. The purpose of the salt bridge is to maintain electrical neutrality in each half-cell by allowing the flow of ions to balance the charge buildup in the half-cells. In the cell shorthand notation, the double slash "//" represents the salt bridge that connects the two half-cells of the electrochemical cell. The first half-cell is represented on the left-hand side of the slash and the second half-cell is represented on the right-hand side of the slash. The anode (where oxidation occurs) is represented on the left side, and the cathode (where reduction occurs) is represented on the right side. Therefore, the correct answer is option number 3: salt bridge.
Frage 20 Bericht
SO3 is not directly dissolved in water in the industrial preparation of H2 SO4 by the contact process because
Antwortdetails
Frage 21 Bericht
Which of the following is the best starting material for the preparation of oxygen? Heating of trioxonitrate (v) with
Antwortdetails
Frage 22 Bericht
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Antwortdetails
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Frage 23 Bericht
Which of the following represents the kind of bonding present in ammonium chloride?
Antwortdetails
Ammonium chloride contains both ionic and covalent bonds. In ammonium chloride, the ammonium ion (NH4+) is positively charged and the chloride ion (Cl-) is negatively charged. These ions are held together by ionic bonds, which are formed between positively and negatively charged ions. However, the bond between the hydrogen atom in the ammonium ion and the nitrogen atom in the ammonium ion is also a covalent bond. This type of covalent bond is known as a dative covalent bond, or a coordinate covalent bond, because the electron pair being shared is supplied by one atom only (the nitrogen atom in this case). So, the kind of bonding present in ammonium chloride is both ionic and dative covalent. In simple terms, ammonium chloride contains both ionic bonds between its positive and negative ions, and a dative covalent bond between the hydrogen atom and nitrogen atom within the ammonium ion.
Frage 24 Bericht
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Antwortdetails
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Frage 25 Bericht
A synthetic rubber is obtained from the polymerization of
Antwortdetails
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Frage 26 Bericht
The oxidation state(s) of nitrogen in ammonium nitrite is/are
Antwortdetails
Ammonium nitrite = NH4
NO2
NH+4
: Let the oxidation number of Nitrogen = x
x + 4 = 1 ⟹
x = 1 - 4
x = -3
NO−2
: x - 4 = -1
x = -1 + 4 ⟹
x = +3.
The oxidation numbers for Nitrogen in Ammonium Nitrite = -3, +3.
Frage 27 Bericht
2-methylprop-1-ene is an isomer of
Antwortdetails
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Frage 28 Bericht
In the reaction between sodium hydroxide and tetraoxosulphate (VI) solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralize 10cm3 of 1.25 molar tetraoxosulphate (vi) acid?
Antwortdetails
Equation of reaction : 2NaOH + H2 SO4 → Na2 SO4 + 2H2 O
Concentration of a base, CB = 0.5M
Volume of acid, VA = 10cm3
Concentration of an acid, CA = 1.25M
Volume of base, VB = ?
Recall:
CAVACBVB=nAnB
... (1)
N.B: From the equation,
nAnB=12
From (1)
1.25×100.5×VB=12
12.50.5VB=12
25 = 0.5VB
VB = 50.0 cm3
Frage 29 Bericht
The velocity, V of a gas is related to its mass, M by (k = proportionality constant)
Antwortdetails
Recall:
V = √3RTM
∴V∝1√M
V=k√M
V = kM12
Frage 31 Bericht
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Antwortdetails
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Frage 32 Bericht
The electronic configuration of element Z is 1s2 2s2 2p6 3s2 3p1 . What is the formula of the compound formed between Z and tetraoxosulphate (VI) ion.
Antwortdetails
Z = 1s2
2s2
2p6
3s2
3p1
?
We have Z3+
and SO2?4
The reaction : Z3+
+ SO2?4
?
Z2
(SO4
)3
.
Frage 33 Bericht
A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen. If the molar mass of the compound is 180. Find the molecular formula.
[H = 1, C = 12, O = 16]
Antwortdetails
The molecular formula of a compound is determined by the number of atoms of each element present in the molecule. To find the molecular formula, we need to determine the number of atoms of each element in the compound. First, we convert the percent composition to grams. For example, 40.0% carbon means 40.0 g of carbon per 100 g of compound. Then we divide the number of grams of each element by the molar mass of each element. For example, 40.0 g of carbon divided by the molar mass of carbon (12 g/mol) gives us 3.33 mol of carbon. Next, we convert the number of moles of each element to the number of atoms by multiplying the number of moles by Avogadro's number (6.022 x 10^23 atoms/mol). Finally, we balance the numbers of atoms of each element by dividing them by the smallest number of atoms of all the elements and rounding to the nearest whole number. In this case, the smallest number of atoms is 2, which is the number of hydrogen atoms. So, we divide the number of atoms of carbon and oxygen by 2 to balance the numbers of atoms of all the elements. Therefore, the molecular formula of the compound is C6H12O6.
Frage 34 Bericht
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Antwortdetails
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Frage 35 Bericht
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Antwortdetails
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Frage 36 Bericht
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Antwortdetails
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Frage 37 Bericht
Which of the following pairs cannot be represented with a chemical formula?
Antwortdetails
The pair that cannot be represented with a chemical formula is air and bronze. Air is a mixture of several gases, primarily nitrogen (N₂) and oxygen (O₂), with small amounts of other gases such as argon (Ar), carbon dioxide (CO₂), and neon (Ne). Since air is a mixture and not a pure substance, it cannot be represented by a chemical formula. Bronze, on the other hand, is an alloy composed mainly of copper (Cu) and tin (Sn) with small amounts of other metals. The composition of bronze can vary depending on the specific alloy, but it can be represented by a chemical formula such as CuSn. Sodium chloride (NaCl) is a compound composed of sodium (Na) and chlorine (Cl) in a fixed ratio of 1:1, and it can be represented by a chemical formula. Similarly, copper (Cu) and sodium chloride (NaCl) can each be represented by a chemical formula. Cu is an element, so its chemical formula is simply its symbol, while NaCl is a compound with a fixed ratio of sodium and chlorine atoms. Caustic soda (sodium hydroxide, NaOH) and washing soda (sodium carbonate, Na₂CO₃) are both compounds that can be represented by chemical formulas. NaOH consists of one sodium atom, one oxygen atom, and one hydrogen atom, while Na₂CO₃ consists of two sodium atoms, one carbon atom, and three oxygen atoms.
Frage 38 Bericht
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Antwortdetails
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Frage 39 Bericht
Which two gases can be used for the demonstration of the fountain experiment?
Antwortdetails
Two gases that can be used in the study of fountain experiment is ammonia gas and hydrogen chloride gas. The experiment introduces concepts like solubility and the gas laws at the entry level.
Frage 40 Bericht
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Antwortdetails
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Möchten Sie mit dieser Aktion fortfahren?