Cargando....
Mantén pulsado para arrastrar. |
|||
Haz clic aquí para cerrar |
Pregunta 1 Informe
Which of the following gases contains the least number of atoms at s.t.p?
Detalles de la respuesta
At standard temperature and pressure (s.t.p), all gases have the same number of atoms or molecules. What changes between them is the volume they occupy, and this is dependent on their molecular mass and the number of moles. Comparing the number of moles between the gases listed above, 7 moles of argon will contain the most number of atoms, followed by 4 moles of chlorine, then 3 moles of ozone, and finally 1 mole of butane would contain the least number of atoms. In summary, the number of atoms in a gas sample depends on the number of moles, but at s.t.p, the volume occupied by each gas depends on its molecular mass and the number of moles.
Pregunta 2 Informe
Which of the following alkaline metals react more quickly spontaneously with water?
Detalles de la respuesta
The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity in the higher periods. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if metal is heated to red heat. Additionally, beryllium has a resistant outer oxide layer that lowers its reactivity at lower temperatures.
Magnesium shows insignificant reaction with water, but burns vigorously with steam or water vapor to produce white magnesium oxide and hydrogen gas:
A metal reacting with cold water will produce metal hydroxide. However, if a metal reacts with steam, like magnesium, metal oxide is produced as a result of metal hydroxides splitting upon heating.
The hydroxides of calcium, strontium and barium are only slightly water-soluble but produce sufficient hydroxide ions to make the environment basic, giving a general equation of:
Order of reactivity | Metal | Reactions with water or steam |
---|---|---|
most reactive | potassium (K) | very vigorous reaction with cold water |
↑ | sodium (Na) | vigorous reaction with cold water |
↓ | calcium (Ca) | less vigorous reaction with cold water |
least reactive | magnesium (Mg) | slow reaction with cold water, vigorous with steam |
Pregunta 3 Informe
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Detalles de la respuesta
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Pregunta 4 Informe
A synthetic rubber is obtained from the polymerization of
Detalles de la respuesta
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Pregunta 5 Informe
Which of the following pollutants will lead to the depletion of ozone layer?
Detalles de la respuesta
The pollutant that leads to the depletion of the ozone layer is chlorofluorocarbon (CFCs). CFCs are man-made chemicals that were widely used in the past as refrigerants, solvents, and propellants. When CFCs are released into the atmosphere, they rise into the stratosphere, where they come into contact with ozone molecules. The chlorine atoms in CFCs react with ozone, breaking apart the ozone molecules and causing a reduction in the overall amount of ozone in the stratosphere. This process continues until all of the ozone-depleting chlorine atoms have been depleted. The resulting decrease in ozone in the stratosphere leads to an increase in the amount of harmful ultraviolet radiation that reaches the Earth's surface, which can have negative impacts on human health and the environment.
Pregunta 6 Informe
When chlorine water is exposed to bright sunlight, the following products are formed
Detalles de la respuesta
Pregunta 7 Informe
A cell shorthand notation can be written as A / A+ // B2+ /B. The double slash in the notation represents the
Detalles de la respuesta
The double slash in the cell shorthand notation represents the salt bridge. A salt bridge is a component of an electrochemical cell that connects the two half-cells and allows the flow of ions between them. It consists of an inert electrolyte solution (usually a salt) that is placed between the two half-cells. The purpose of the salt bridge is to maintain electrical neutrality in each half-cell by allowing the flow of ions to balance the charge buildup in the half-cells. In the cell shorthand notation, the double slash "//" represents the salt bridge that connects the two half-cells of the electrochemical cell. The first half-cell is represented on the left-hand side of the slash and the second half-cell is represented on the right-hand side of the slash. The anode (where oxidation occurs) is represented on the left side, and the cathode (where reduction occurs) is represented on the right side. Therefore, the correct answer is option number 3: salt bridge.
Pregunta 8 Informe
A radioactive nucleus has a half-life of 20 years, starting with 100,000 particles, how many particles will be left exactly at the end of 40 years
Detalles de la respuesta
The half-life of a radioactive nucleus is the time it takes for half of its particles to decay. This means that after 20 years, 100,000 particles will become 50,000 particles. After 40 years, we can find the number of particles remaining by counting the number of half-lives that have passed. Since 40 years is double the half-life of 20 years, this means that two half-lives have passed, so the number of particles will be halved twice. Starting with 100,000 particles: - After 1 half-life (20 years), there will be 50,000 particles remaining. - After 2 half-lives (40 years), there will be 25,000 particles remaining. So, exactly at the end of 40 years, there will be 25,000 particles remaining.
Pregunta 9 Informe
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Detalles de la respuesta
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Pregunta 10 Informe
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Detalles de la respuesta
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Pregunta 11 Informe
A secondary alkanol can be oxidized to give an
Detalles de la respuesta
A secondary alkanol is an alcohol with two carbon atoms attached to the carbon bearing the hydroxyl group (-OH). Secondary alkanols can be oxidized by a strong oxidizing agent, such as potassium dichromate (K2Cr2O7), to give an alkanone. During the oxidation process, the oxygen atom from the oxidizing agent replaces the hydroxyl group of the secondary alkanol to form a carbonyl group (C=O) in the alkanone. Since alkanones contain a carbonyl group, they are also known as ketones. Therefore, the answer to the question is alkanone, as secondary alkanols can be oxidized to form ketones.
Pregunta 12 Informe
The electronic configuration of element Z is 1s2 2s2 2p6 3s2 3p1 . What is the formula of the compound formed between Z and tetraoxosulphate (VI) ion.
Detalles de la respuesta
Z = 1s2
2s2
2p6
3s2
3p1
?
We have Z3+
and SO2?4
The reaction : Z3+
+ SO2?4
?
Z2
(SO4
)3
.
Pregunta 13 Informe
If acidified Potassium Dichromate(VI) (K2 Cr2 O7 ) acts as oxidizing agent, color changes from
Detalles de la respuesta
Potassium Dichromate (VI), when it is acidified, acts as an oxidizing agent. When this happens, the color changes from orange to green. This is because the orange color of the potassium dichromate is due to the presence of Cr(VI) ions, which are oxidized to Cr(III) ions. The green color that is produced is due to the formation of chromium(III) ions. In this reaction, the dichromate ions are being oxidized, which means that they are losing electrons, and the chromium ions are being reduced, which means that they are gaining electrons. The transfer of electrons causes the color change from orange to green.
Pregunta 14 Informe
Which of the following properties increases from left to right along the period but decreases down the group in the Periodic Table?
I. Atomic Number ii. Ionization energy iii. Metallic character iv. Electron affinity
Detalles de la respuesta
Ionization energy and electron affinity increase across a period, and decrease down a group.
Pregunta 15 Informe
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Detalles de la respuesta
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Pregunta 16 Informe
An element Z contains 80% of 168 Z and 20% of 188 Z. Its relative atomic mass is
Detalles de la respuesta
R.A.M of Z = 16(80100)+18(20100)
= 12.8+3.6
= 16.4
Pregunta 17 Informe
The following are isoelectronic ions except
Detalles de la respuesta
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Pregunta 18 Informe
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Detalles de la respuesta
Pregunta 19 Informe
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Detalles de la respuesta
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Pregunta 20 Informe
Which two gases can be used for the demonstration of the fountain experiment?
Detalles de la respuesta
Two gases that can be used in the study of fountain experiment is ammonia gas and hydrogen chloride gas. The experiment introduces concepts like solubility and the gas laws at the entry level.
Pregunta 21 Informe
Which quantum divides shells into orbitals?
Detalles de la respuesta
The quantum that divides shells into orbitals is the "Azimuthal" quantum number, also known as the "angular momentum" quantum number. The azimuthal quantum number determines the shape of an electron's orbital, which is a region in space where there is a high probability of finding an electron. It describes the angular momentum of an electron in an atom and the number of subshells within a given shell. Each subshell is associated with a specific shape, and can hold a certain number of electrons. The azimuthal quantum number is represented by the letter "l" and can have integer values ranging from 0 to (n-1), where "n" is the principal quantum number. Each value of "l" corresponds to a different subshell shape: - l = 0 corresponds to an "s" subshell, which is spherical in shape. - l = 1 corresponds to a "p" subshell, which has a dumbbell shape with two lobes. - l = 2 corresponds to a "d" subshell, which has a more complex shape with four lobes and a doughnut-like ring. - l = 3 corresponds to an "f" subshell, which has an even more complex shape with eight lobes. The number of orbitals within a subshell is equal to 2l+1. For example, a "p" subshell (l = 1) has three orbitals (2l+1 = 3), which are labeled as "px", "py", and "pz". In summary, the azimuthal quantum number determines the shape of the electron's orbital and the number of subshells within a given shell, and it is represented by the letter "l".
Pregunta 22 Informe
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Detalles de la respuesta
Pregunta 23 Informe
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Detalles de la respuesta
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Pregunta 24 Informe
The hybridization in the compound CH3−CH2−C≡H is
Detalles de la respuesta
The hybridization in a and b is sp3 hybridization while in c and d is sp hybridization.
Pregunta 25 Informe
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Detalles de la respuesta
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Pregunta 26 Informe
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Detalles de la respuesta
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Pregunta 27 Informe
If the cost of electricity required to discharge 10g of an ion X3+ is N20.00, how much would it cost to discharge 6g of ion Y2+ ?
[1 faraday = 96,500C, atomic masses are X = 27, Y = 24]
Detalles de la respuesta
X3+
+ 3e−
→
X
3F = 27g
xF = 10g
x3=1027⟹x=109F
109
F ≡
N20.00
1F is equivalent to x
1109=x20
910=x20⟹x=N18.00
1F is equivalent to N18.00.
Y2+
+ 2e−
→
Y
2F = 24g
xF = 6g
x = 6×224=12F
1F = N18.00
12
F = 12×N18.00
= N9.00
Pregunta 28 Informe
Which of the following describes the chemical property of acids?
Detalles de la respuesta
Pregunta 29 Informe
At 27°C, 58.5g of sodium chloride is present in 250cm3 of a solution. The solubility of sodium chloride at this temperature is?
(molar mass of sodium chloride = 111.0gmol−1 )
Detalles de la respuesta
Given the Mass of the salt = 58.5g
Volume = 250 cm3
= 0.25 dm3
Mass concentration = MassVolume
= 58.50.25
= 234 gdm−3
Solubility (in moldm−3
= 234111
= 2.11 moldm−3
≊
2.0 moldm−3
Pregunta 30 Informe
Which of the following reactions is an oxidation process?
Detalles de la respuesta
Pregunta 31 Informe
Which of the following statements about catalyst is false?
Detalles de la respuesta
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Pregunta 32 Informe
Consider the reaction: A + 2B(g)⇌ 2C + D(g) (Δ H = +ve)
What will be the effect of decrease in temperature on the reaction?
Detalles de la respuesta
The effect of a decrease in temperature on the reaction will be that the rate of the backward reaction will increase. In a chemical reaction, the rate of the forward and backward reactions are determined by the activation energy required for each step and the temperature of the system. When the temperature is decreased, the rate of the reaction decreases, and the rate of the backward reaction increases. This shift in the rate of the backward reaction means that there will be a shift in the position of the equilibrium of the reaction. As the rate of the backward reaction increases, the concentration of the reactants will increase and the concentration of the products will decrease, leading to a decrease in the overall yield of the products. In this reaction, as ΔH (the change in enthalpy) is positive, which means that the reaction is endothermic. Endothermic reactions absorb heat from the surroundings to proceed, so a decrease in temperature will lead to a decrease in the rate of the forward reaction and an increase in the rate of the backward reaction. This shift in the rate of the backward reaction will shift the position of the equilibrium of the reaction to the left, leading to an increase in the concentration of the reactants and a decrease in the concentration of the products.
Pregunta 34 Informe
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Detalles de la respuesta
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Pregunta 35 Informe
Which important nitrogen-containing compound is produced in Haber's process?
Detalles de la respuesta
The important nitrogen-containing compound that is produced in Haber's process is NH3, which is also known as ammonia. Haber's process is a chemical process used to produce ammonia by reacting nitrogen gas (N2) and hydrogen gas (H2) under high pressure and temperature in the presence of an iron catalyst. The reaction between nitrogen and hydrogen produces ammonia as the main product, along with some nitrogen and hydrogen gases that do not react. NH3 is an important compound that is widely used in industry for the production of fertilizers, plastics, and other chemical products. It is also used as a cleaning agent, a refrigerant, and a fuel for engines. In addition, NH3 is an essential compound for life, as it is a key component of amino acids, which are the building blocks of proteins.
Pregunta 36 Informe
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Detalles de la respuesta
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Pregunta 37 Informe
X is a substance which liberates CO2 on treatment with concentrated H2 SO4 . A warm solution of X can decolorize acidified KMnO4 . X is
Detalles de la respuesta
It should be noted that for X to liberate CO2
, X must be a carbonate or an oxalate. Since X decolorizes KMnO4
, X must be an oxalate.
Therefore, X is H2
C2
O4
.
Pregunta 38 Informe
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Detalles de la respuesta
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Pregunta 39 Informe
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Detalles de la respuesta
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Pregunta 40 Informe
What technique is suitable for separating a binary solution of potassium chloride and potassium trioxochlorate (V)?
Detalles de la respuesta
Fractional crystallization is the most suitable technique for separating a binary solution of potassium chloride and potassium trioxochlorate (V). This is because fractional crystallization is a process that separates a mixture of substances based on their solubility in a solvent at a particular temperature. In this case, potassium chloride and potassium trioxochlorate (V) have different solubilities in a solvent such as water at different temperatures. By carefully controlling the temperature, the solubility of each compound can be selectively increased or decreased, allowing them to be separated by crystallization. The less soluble compound will form crystals first and can be separated from the more soluble compound, which remains in the solution. Therefore, fractional crystallization can be used to separate potassium chloride and potassium trioxochlorate (V) in a binary solution.
¿Te gustaría proceder con esta acción?