Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Détails de la réponse
Question 2 Rapport
The elements in the periodic table are listed in order of increasing
Détails de la réponse
Question 3 Rapport
The conductivity of an acid solution depends on the
Détails de la réponse
The conductivity of an acid solution depends on the amount of ions present and their mobilities. When an acid dissolves in water, it forms ions that can carry an electric charge. These ions are what allows the solution to conduct electricity. The more ions there are in the solution, the better it can conduct electricity. However, not all ions have the same mobility or ability to move around in the solution. Ions with a higher mobility can move more easily through the solution, leading to a higher conductivity. Therefore, the conductivity of an acid solution is determined by both the amount of ions present and their mobilities. Other factors such as temperature can also affect conductivity, but the primary factors are the amount and mobility of ions.
Question 4 Rapport
The alkanoic acid found in human sweat is
Détails de la réponse
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Question 5 Rapport
(I). 3CuO(s) + 2NH3(g) -----> 3Cu(s) + 3H2O(l) + N2(g)
(II). 2NH3(g) + 3Cl2(g) -----> 6HCl(g) + N2(g)
(III). 4NH3(g) + 3O2(g) -----> 6H2O(l) + N2(g)
The reactions represented by the equations above demonstrate the
Détails de la réponse
Question 6 Rapport
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Détails de la réponse
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Question 7 Rapport
Methanoic acid mixes with water in all proportions and has about the same boiling point as water. Which of the following methods would you adopt to obtain pure water from a mixture of Sand, water and methanoic acid?
Détails de la réponse
Question 8 Rapport
Suitable reagents for the laboratory preparation nitrogen are
Détails de la réponse
Question 9 Rapport
The type of bonding in [Cu(NH3 )4 ]2+ is
Détails de la réponse
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Question 10 Rapport
Which of the following is used to power steam engines?
Détails de la réponse
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Question 11 Rapport
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Détails de la réponse
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Question 12 Rapport
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Détails de la réponse
Question 13 Rapport
The constituent common to duralumin and alnico is
Détails de la réponse
The common constituent found in both duralumin and alnico is aluminum (Al). Duralumin is an alloy made up of aluminum, copper, manganese, and magnesium. It is known for its high strength and light weight, making it useful in various applications such as aerospace and construction. Alnico, on the other hand, is an alloy made of aluminum, nickel, cobalt, iron, and small amounts of other elements. It is used in the production of strong permanent magnets for various applications such as in motors, generators, and loudspeakers. So, even though duralumin and alnico have different properties and uses, they both contain the element aluminum.
Question 14 Rapport
The presence of ammonia gas in a desiccator can exclusively be removed by
Détails de la réponse
Question 15 Rapport
The situation obtained when a perfect gas expands into a vacuum is
Détails de la réponse
Question 16 Rapport
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Détails de la réponse
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Question 17 Rapport
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Détails de la réponse
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Question 18 Rapport
The boiling of fat and aqueous caustic soda is referred to as
Détails de la réponse
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Question 19 Rapport
In the preparation of oxygen by heating KCIO, in the presence of MnO2 only moderate heat is needed because the catalyst acts by 2
Détails de la réponse
The presence of MnO2 acts as a catalyst in the reaction of KCIO2 to produce oxygen. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. MnO2 acts by lowering the energy barrier of the reaction, which means it reduces the amount of energy required for the reaction to take place. This makes it easier for the reaction to occur, and thus the reaction proceeds at a faster rate. As a result, only moderate heat is needed to provide the initial energy required for the reaction to start. Therefore, the correct answer is: lowering the energy barrier of the reaction.
Question 20 Rapport
Which of the compounds is composed of Al, Si, O and H?
Détails de la réponse
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Question 21 Rapport
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Détails de la réponse
Question 22 Rapport
The figure above shows the electrolysis of molten sodium chloride. Z is the
Détails de la réponse
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Question 23 Rapport
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Détails de la réponse
Question 24 Rapport
Which of the following are mixtures?
I. Petroleum
II. Rubber latex
III. Vulcanizer's solution
IV. Carbon sulphide
Détails de la réponse
Question 25 Rapport
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Détails de la réponse
Question 26 Rapport
The ionic radii of metals are usually
Détails de la réponse
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 27 Rapport
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment
Détails de la réponse
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment, the litmus will turn red and oxygen gas will be evolved. This is because during electrolysis, the positively charged copper ions (Cu2+) in the copper II sulphate solution are attracted to the negative cathode electrode, where they gain electrons and are reduced to form solid copper. At the same time, the negatively charged sulphate ions (SO42-) are attracted to the positive anode electrode, where they lose electrons and are oxidized to form oxygen gas and water. The litmus added to the anode compartment turns red because of the formation of oxygen gas, which is a highly reactive oxidizing agent that can react with the litmus to cause it to turn red. No hydrogen gas is evolved because hydrogen is produced at the cathode, which is in a separate compartment from the anode where the litmus is added.
Question 28 Rapport
The periodic classification is an arrangement of the elements
Détails de la réponse
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Question 29 Rapport
Diamond is a bad conductor of electricity because its bonding electrons are used in
Détails de la réponse
Diamond is a bad conductor of electricity because of its unique structure and bonding. The carbon atoms in diamond form a covalent network, where each carbon atom is bonded to four other carbon atoms. These bonds are strong and hold the atoms in a rigid three-dimensional structure called a crystal lattice. In a covalent bond, atoms share electrons to form a stable compound. In diamond, each carbon atom shares its valence electrons with four neighboring carbon atoms, forming a very strong covalent bond. All the valence electrons in the crystal lattice are used in covalent bond formation, which means there are no free or mobile electrons to carry an electric current. In other words, the electrons are tightly held in the covalent bonds, making it difficult for them to move around the crystal lattice and conduct electricity. In contrast, metals conduct electricity well because they have delocalized or free electrons that can move through the lattice of positively charged ions. So, diamond, being a covalent network solid, does not have free electrons that can carry an electric current, which is why it is a bad conductor of electricity.
Question 30 Rapport
2KClO3(g) MNO3? 2KCl(s) + 3O2(g)
The importance of the catalyst in the reaction above is that
Détails de la réponse
Question 31 Rapport
If 1 litre of 2.2M sulphuric acid is poured into a bucket containing 10 litres of water and the resulting solution mixed thoroughly, the resulting sulphuric acid concentration will be
Détails de la réponse
When 1 liter of 2.2M sulphuric acid is added to 10 liters of water, the total volume of the resulting solution is 11 liters. To find the resulting concentration of sulphuric acid, we need to use the equation: M1V1 = M2V2 where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume. We can plug in the values we know: M1 = 2.2M (the initial concentration of the sulphuric acid) V1 = 1L (the initial volume of the sulphuric acid) M2 = ? (the final concentration we're trying to find) V2 = 11L (the final volume of the resulting solution) Solving for M2, we get: M2 = (M1 x V1) / V2 M2 = (2.2M x 1L) / 11L M2 = 0.2M Therefore, the resulting sulphuric acid concentration is 0.2M or 0.2 moles per liter. In summary, when 1 liter of 2.2M sulphuric acid is mixed with 10 liters of water, the resulting sulphuric acid concentration is diluted to 0.2M. This is because the total volume of the resulting solution is greater than the initial volume of the sulphuric acid, which leads to a decrease in concentration.
Question 33 Rapport
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Détails de la réponse
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Question 34 Rapport
2SO2 (g) + O2 (g) ↔ 2SO3 (g) ΔH = -395.7kJmol−1
In the equation, an increase in temperature will shift the equilibrium position to the
Détails de la réponse
Question 35 Rapport
According to Charles' law, the volume of a gas becomes zero at
Détails de la réponse
Charles' law states that the volume of a gas is directly proportional to its temperature, provided that the pressure remains constant. This means that as the temperature of a gas increases, its volume also increases. However, it is important to note that this law only applies to ideal gases, which are theoretical gases that perfectly follow the laws of thermodynamics. According to Charles' law, the volume of a gas becomes zero at absolute zero, which is approximately -273°C. At this temperature, the gas particles would have no kinetic energy and would be in their lowest energy state. The volume of a real gas would not actually become zero at absolute zero because the gas particles would have some residual intermolecular interactions that would prevent them from completely collapsing to a single point.
Question 36 Rapport
What mass of Cu would be produced by the cathodic reduction of Cu2+ when 1.60A of current passes through a solution of CuSO4 for 1 hour. (F=96500Cmol−1 , Cu=64)
Détails de la réponse
The reduction reaction that occurs at the cathode during the electrolysis of CuSO4" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-1-Frame">4, is: Cu2+" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-2-Frame">2+ + 2e- -> Cu(s) From this, we can see that each Cu2+ ion requires two electrons to be reduced to copper metal. Given the current (I = 1.60 A), time (t = 1 hour = 3600 s), and Faraday's constant (F = 96500 C/mol), we can calculate the total amount of charge that passes through the solution: Q = I*t = 1.60 A * 3600 s = 5760 C Using Faraday's law, we can relate the amount of charge that passes through the solution to the number of moles of electrons transferred during the reduction reaction: n = Q/F = 5760 C / 96500 C/mol = 0.0597 mol e- Since each Cu2+ ion requires 2 electrons to be reduced to copper metal, the number of moles of copper produced is half the number of moles of electrons transferred: mol Cu = 0.0597 mol e- / 2 = 0.0299 mol Cu Finally, we can convert the moles of copper produced to grams using the molar mass of copper: mass Cu = 0.0299 mol Cu * 64 g/mol = 1.91 g Therefore, the answer is 1.91 g of Cu produced. is correct.
Question 37 Rapport
In the shown experiment (Fig. 1) the litmus paper will initially
Détails de la réponse
Question 39 Rapport
The number of electrons in the valence shell of an element of atomic number 14 is?
Détails de la réponse
The number of electrons in the valence shell of an element can be determined by using the periodic table and the electron configuration of the element. The valence shell is the outermost shell that contains electrons that are involved in chemical reactions. For an element with atomic number 14, which is silicon, the electron configuration is 1s2 2s2 2p6 3s2 3p2. The valence shell of silicon is the third shell, which contains 3s2 and 3p2 electrons. Therefore, the number of electrons in the valence shell of silicon is 4 electrons.
Question 40 Rapport
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Détails de la réponse
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Souhaitez-vous continuer cette action ?