Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
A chord of a circle radius √3cm subtends an angle of 60∘ on the circumference of he circle. Find the length of the chord
Détails de la réponse
Question 2 Rapport
Evaluate ∫π2 (sec2 x - tan2x)dx
Détails de la réponse
∫π2
(sec2 x - tan2x)dx
∫π2
dx = [X]π2
= π
- 2 + c
when c is an arbitrary constant of integration
Question 3 Rapport
If b3 = a-2 and c13 = a12 b, express c in terms of a
Détails de la réponse
c13
= a12
b
= a12
b x a-2
= a-32
= (c13
)3
= (a-32
)13
c = a-12
Question 4 Rapport
The kinetic element with respect to the multiplication shown in the diagram below is
⊕pprsprprpqpqrsrrrrrsqsrq
Détails de la réponse
Question 5 Rapport
A market woman sells oil in cylindrical tins 10cm deep and 6cm in diameter at ₦15.00 each. If she bought a full cylindrical jug 18cm deep and 10cm in diameter for ₦50.00, how much did she make by selling all the oil?
Détails de la réponse
The volume of the cylindrical jug is given by V = πr^2h, where r = 5cm (radius = diameter/2) and h = 18cm. Thus, V = π(5cm)^2(18cm) = 450π cm^3. The volume of each cylindrical tin is given by V = πr^2h, where r = 3cm (radius = diameter/2) and h = 10cm. Thus, V = π(3cm)^2(10cm) = 90π cm^3. Since the jug contains oil that can fill 450π/90π = 5 cylindrical tins, the market woman sells 5 tins of oil. Therefore, the amount she makes by selling all the oil is 5 × ₦15.00 = ₦75.00. Since she bought the jug for ₦50.00, her profit is ₦75.00 - ₦50.00 = ₦25.00. Therefore, the market woman made ₦25.00 by selling all the oil. Hence, the answer is option D: ₦25.00.
Question 6 Rapport
Given that log4(y - 1) + log4(12 x) = 1 and log2(y + 1) + log2x = 2, solve for x and y respectively
Détails de la réponse
log4(y - 1) + log4(12
x) = 1
log4(y - 1)(12
x) →
(y - 1)(12
x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 →
(y + 1)x = 22 = 4.....(ii)
From equation (ii) x = 4y+1
........(iii)
put equation (iii) in (i) = y (y - 1)[12(4y−1
)] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = 4−3+1
= 4−2
X = 2
therefore x = -2, y = -3
Question 7 Rapport
Find the positive value of x if the standard deviation of the numbers 1, x + 1 is 6
Détails de la réponse
mean (x) = 1+x+1+2x+13
= 3x+33
= 1 + x
X(X−X)(X−X)21−xx2x+1002x+1xx22x2
S.D = √∑(x−7)2∑f
= √(6)2
= 2x23
= 2x2
= 18
x2 = 9
∴ x = ±
√9
= ±
3
Question 8 Rapport
The pie chart shows the monthly expenditure pf a public servant. The monthly expenditure on housing is twice that of school fees. How much does the worker spend on housing if his monthly income is ₦7200?
Détails de la réponse
Based on the information given in the pie chart, the monthly expenditure on school fees can be represented by the fraction 1/10 (since it is one-tenth of the total expenditure) and the monthly expenditure on housing can be represented by the fraction 2/10 (since it is twice the amount of school fees). To find out how much the worker spends on housing, we need to first calculate the total amount of money he spends on all his monthly expenses. From the pie chart, we see that the total monthly expenditure is represented by the fraction 7/10. If we let x represent the amount of money the worker spends on housing each month, we can set up the following equation to solve for x: x + (1/10)*7200 = (2/10)*7200 Simplifying the equation, we get: x + 720 = 1440 Subtracting 720 from both sides, we get: x = 720 Therefore, the worker spends ₦7200/10 = ₦720 on school fees each month, and ₦720 * 2 = ₦1440 on housing each month. So the answer is ₦2000.
Question 9 Rapport
Make ax the subject of formula x+1x?a
Détails de la réponse
x+ax?a
= m
x + a = mx - ma
a + ma = mx - x
a(m + 1) = x(m - 1)
ax
= m?1m+a
Question 10 Rapport
The binary operation ⊕ is defined by x ∗ y = xy - y - x for all real values x and y. If x ∗ 3 = 2∗ , find x
Détails de la réponse
x ∗
y = xy - y - x, x ∗
3 = 3x - 3 - x = 2x - 3
2 ∗
x = 2x - x - 2 = x - 2
∴ 2x - 3 = x - 2
x = -2 + 3
= 1
Question 11 Rapport
If p + 1, 2P - 10, 1 - 4p2are three consecutive terms of an arithmetic progression, find the possible values of p
Détails de la réponse
2p - 10 = p+1+1−4P22
(Arithmetic mean)
= 2(2p - 100 = p + 2 - 4P2)
= 4p - 20 = p + 2 - 4p2
= 4p2 + 3p - 22 = 0
= (p - 2)(4p + 11) = 0
∴ p = 2 or -411
Question 12 Rapport
Solve for the equation √x - √(x−2) - 1 = 0
Détails de la réponse
To solve this equation, we can start by simplifying the expression inside the square root symbol by taking the common denominator. √x/(x-2) - √(x-2)/(x-2) - 1 = 0 We can simplify this further by combining the two terms inside the square root, which have a common denominator. [√x - √(x-2)]/(x-2) - 1 = 0 Now we can take the common denominator of the two terms inside the parenthesis and simplify. [√x - √(x-2) - (x-2)]/(x-2) = 0 Simplifying the numerator further, [√x - √(x-2) - x + 2]/(x-2) = 0 [√x - x + 2 - √(x-2)]/(x-2) = 0 [√x - x + 2] = √(x-2) Squaring both sides of the equation, (√x - x + 2)² = x - 2 Expanding and simplifying, x² - 2x(√x + 1) + 3 = 0 We can now use the quadratic formula to solve for x: x = [2(√x + 1) ± √(4x - 8)]/2 x = (√x + 1) ± √(x - 2) However, we need to make sure that the solution we get satisfies the original equation. We can check by substituting the value of x back into the original equation. After testing each option, we find that the only solution that satisfies the original equation is x = 9/4.
Question 13 Rapport
The midpoint of the segment of the line y = 4x + 3 which lies between the x-ax 1 is and the y-ax 1 is
Détails de la réponse
To find the midpoint of a line segment, we need to find the average of the endpoints. The x-intercept of the line y = 4x + 3 is found by setting y = 0 and solving for x: 0 = 4x + 3 x = -3/4 So the x-coordinate of the midpoint is the average of -3/4 and 0: x = (-3/4 + 0)/2 = -3/8 To find the y-coordinate of the midpoint, we plug in x = -3/8 to the equation of the line: y = 4(-3/8) + 3 = -3/2 + 3 = 3/2 So the midpoint is (-3/8, 3/2). Therefore, the answer is (-3/8, 3/2).
Question 14 Rapport
If x, y can take values from the set (1, 2, 3, 4), find the probability that the product of x and y is not greater than 6
Détails de la réponse
∣∣ ∣ ∣ ∣ ∣ ∣∣123411234224683369124481216∣∣ ∣ ∣ ∣ ∣ ∣∣
P (product of x and y not greater than 6) = 1016
= 58
Question 15 Rapport
The sum of the first three terms of a geometric progression is half its sum to infinity. Find the positive common ratio of the progression.
Détails de la réponse
Let the G.P be a, ar, ar2, S3 = 12
S
a + ar + ar2 = 12
(a1−r
)
2(1 + r + r)(r - 1) = 1
= 2r3 = 3
= r3 = 32
r(32
)13
= √32
Question 16 Rapport
The locus of all points at a distance 8cm from a point N passes through points T and S. If S is equidistant from T and N, find the area of triangle STN.
Détails de la réponse
Question 17 Rapport
In the figure, PQST is a parallelogram and TSR is a straight line. If the area of △
QRS is 20cm2, find the area of the trapezium PQRT.
Détails de la réponse
A△ = 12 x 8 x h = 20
= 12 x 8 x h = 4h
h = 204
= 5cm
A△ (PQTS) = L x H
A△ PQRT = A△ QSR + A△ PQTS
20 + 50 = 70cm2
ALTERNATIVE METHOD
A△ PQRT = 12 x 5 x 28
= 70cm2
Question 18 Rapport
A bag contains 16 red balls and 20 blue balls only. How many white balls must be added to the bag so that the probability of randomly picking a red ball is equal to 25
Détails de la réponse
Number of red balls = 16,
Number of blue balls = 20
Let x represent the No of white balls to be added
∴ Total number of balls = 36 + x
2(36 + x) = 80
= 2x + 80 - 72
= 8
x = 82
= 4
Question 19 Rapport
In a recent zonal championship games involving 10 teams, teams X and Y were given probabilities 25 and 13 respectively of winning the gold in the football event. What is the probability that either team will win the gold?
Détails de la réponse
p(x) = 25
p(y) = 13
p(x or y) = p(x ∪ y)
= p(x) + p(y)
= 25
+ 13
= 115
Question 20 Rapport
If y = 243(4x + 5)-2, find dydx when x = 1
Détails de la réponse
To find dy/dx, we need to differentiate y with respect to x. We can start by using the chain rule, which states that if we have a function of the form f(g(x)), the derivative of that function with respect to x is f'(g(x)) * g'(x). In this case, we have y = 243(4x + 5)-2, which can be written as y = 243/(4x + 5)^2. Using the chain rule, we have: dy/dx = d/dx(243/(4x + 5)^2) = -2 * 243 / (4x + 5)^3 * d/dx(4x + 5) = -2 * 243 / (4x + 5)^3 * 4 = -1944 / (4x + 5)^3 Now, to find the value of dy/dx when x = 1, we just need to substitute x = 1 into the expression we found above: dy/dx = -1944 / (4(1) + 5)^3 = -1944 / 729 = -8/3 Therefore, the answer is option A: -83. To summarize, we used the chain rule to differentiate y with respect to x, which gave us an expression for dy/dx in terms of x. We then substituted x = 1 to find the value of dy/dx at that point.
Question 21 Rapport
The determinant of matrix ⎛⎜⎝x101−x2311+x4⎞⎟⎠ in terms of x is
Détails de la réponse
∣∣ ∣∣x101−x2311+x4∣∣ ∣∣
= x∣∣∣231+x4∣∣∣
- ∣∣∣1−x314∣∣∣
= 0
= x[8 - 3(1 + x)] - [4(1 - x)-3] - 0 = x[5 - 3x] - [1 - 4x]
= 5x - 3x2 -1 + 4x
= -3x2 + 9X - 1
Question 22 Rapport
The shaded area represents
Détails de la réponse
m = y2−y1x2−x2=3−00−2=−32
= y−y1x−x1
m = y−3x ≥ −32
2(y - 3) ≥ - 3x = 2y - 6 ≥ - 3x
= 2y + 3x ≤ 6 ; x ≤ 0, y ≤ 0
Question 23 Rapport
When the expression pm2 + qm + 1 is divided by (m - 1), it has a remainder is 4, Find p and q respectively
Détails de la réponse
pm2 + qm + 1 = (m - 1) Q(x) + 2
p(1)2 + q(1) + 1 = 2
p + q + 1 = 2
p + q = 1.....(i)
pm2 + qm + 1 = (m - 1)Q(x) + 4
p(-1)2 + q(-1) + 1 = 4
p - q + 1 = 4
p - q = 3....(ii)
p + q = 1, p - q = -3
2p = -2, p = -1
-1 + q = 1
q = 2
Question 24 Rapport
Average hourly earnings(N)5−910−1415−1920−24No. of workers17322524
Estimate the mode of the above frequency distribution
Détails de la réponse
Class intervalsFClass boundary5−7174.5−9.510−14329.5−14.515−192514.5−19.520−242419.5−24.5
mode = 9 + D1D2+D1
x C
= 9.5 + 5(32−17)2(32)−17−25
= 9.5 + 7527
= 12.27
≈
2.3
Question 25 Rapport
In the diagram above; O is the centre of the circle and |BD| = |DC|. If ∠DCB = 35o, find ∠BAO.
Détails de la réponse
Question 26 Rapport
Factorize r2 - r(2p + q) + 2pq
Détails de la réponse
To factorize the expression r2 - r(2p + q) + 2pq, we need to look for two numbers whose product is 2pq and whose sum is -r(2p + q). Let's try to break up -r(2p + q) into two parts such that their product is 2pq. We can write -r(2p + q) as -2rpq - rq2. Then, we can rewrite the expression as: r2 - 2rpq - rq2 + 2pq Now, we can group the first two terms and the last two terms together and factor them separately: r(r - 2pq) - q(r - 2pq) We can see that r - 2pq is a common factor, so we can factor it out: (r - 2pq)(r - q) Therefore, the factorization of r2 - r(2p + q) + 2pq is (r - 2pq)(r - q). So the correct option is (c) (r - q)(r - 2p).
Question 27 Rapport
Express in partial fractions 11+26x2−x−1
Détails de la réponse
11+26x2−x−1
= 11+23x+1
= A3x+1
+ B2x−1
11x = 2 = A(2x - 1) + B(3x + 1)
put x = 12
= -−53
= -−53
A →
A = 1
∴ 11x+26x2−x−1
= 13x+1
+ 32x−1
Question 28 Rapport
find the equation of the curve which passes through by 6x - 5
Détails de la réponse
m = dydv
= 6x - 5
∫dy = ∫(6x - 5)dx
y = 3x2 - 5x + C
when x = 2, y = 5
∴ 5 = 3(2)2 - 5(2) +C
C = 3
∴ y = 3x2 - 5x + 3
Question 29 Rapport
If the distance between the points (x, 3) and (-x, 2) is 5. Find x
Détails de la réponse
To solve the problem, we need to use the distance formula between two points in a coordinate plane. The distance formula is given by: d = sqrt[(x2 - x1)^2 + (y2 - y1)^2] where d is the distance between the two points (x1, y1) and (x2, y2). Using the given points, we have: (x2, y2) = (-x, 2) (x1, y1) = (x, 3) Substituting these values into the distance formula, we get: d = sqrt[(-x - x)^2 + (2 - 3)^2] Simplifying the expression inside the square root: d = sqrt[4x^2 + 1] We are given that d = 5, so we can substitute that into the equation and solve for x: 5 = sqrt[4x^2 + 1] 25 = 4x^2 + 1 24 = 4x^2 6 = x^2 x = sqrt(6) or x = -sqrt(6) Since we are only interested in the positive value of x, the answer is x = sqrt(6). Therefore, the correct option is: √
Question 30 Rapport
For what value of x does 6 sin (2x - 25)o attain its maximum value in the range 0o ? x ? 180o
Détails de la réponse
The maximum value of the function y = 6sin(2x-25) occurs when the argument of the sine function is equal to 90 degrees (or pi/2 radians), because the maximum value of the sine function is 1. So we need to solve the equation 2x-25 = 90. Adding 25 to both sides gives 2x = 115, and then dividing by 2 gives x = 57.5 degrees. Therefore, the answer is x = 57.5 degrees, which is the value of x where the function 6sin(2x-25) attains its maximum value in the given range.
Question 31 Rapport
A man is paid r naira per hour for normal work and double rate for overtime. if he does a 35-hour week which includes q hours of overtime, what is his weekly earning in naira?
Détails de la réponse
The cost of normal work = 35r
The cost of overtime = q x 2r = 2qr
The man's total weekly earning = 35r + 2qr
= r(35 + 2q)
Question 33 Rapport
Evaluate [10.03 ÷ 10.024 ]-1 correct to 2 decimal places
Détails de la réponse
[10.03
+ 10.024
]
= [10.03×0.024
]-1
= [0.0240.003
]-1
= 0.030.024
= 3024
= 1.25
Question 34 Rapport
From the top of a vertical mast 150m high., two huts on the same ground level are observed. One due east and the other due west of the mast. Their angles of depression are 60o and 45o respectively. Find the distance between the huts
Détails de la réponse
150Z
= tan 60o,
Z = 150tan60o
= 1503
= 50√3
cm
150XxZ
= tan45o = 1
X + Z = 150
X = 150 - Z
= 150 - 50√3
= 50( √3
- √3
)m
Question 35 Rapport
In the diagram, QTR is a straight line and < PQT = 30?
. find the sin of < PTR
Détails de la réponse
10sin30o=15sinx=100.5=15sinx
1520=sinx
sin x = 1520=34
N.B x = < PRQ
Question 36 Rapport
Differentiate xcosx with respect to x
Détails de la réponse
let y = xcosx
= x sec x
y = u(x) v (x0
dydx
= Udydx
+ Vdudx
dy x [secx tanx] + secx
x = x secx tanx + secx
Question 37 Rapport
Let = (1001) p = (2345) Q = (u4+u−2vv) be 2 x 2 matrices such that PQ = 1. Find (u, v)
Détails de la réponse
PQ = (2345)
(u4+u−2vv)
= ((2u−6v2(4+u)+3v)4u−10v4(4+u)+5v)
= (1001)
2u - 6v = 1.....(i)
4u - 10v = 0.......(ii)
2(4 + u) + 3v = 0......(iii)
4(4 + u) + 5v = 1......(iv)
2u - 6v = 1 .....(i) x 2
4u - 10v = 0......(ii) x 1
4u - 12v = 0-4u - 10v = 0
-2v = 2 = v = -1
2u - 6(-1) = 1 = 2u = 5
u = -52
∴ (U, V) = (-52
- 1)
Question 39 Rapport
Find the variance of the numbers k, k+1, k+2.
Détails de la réponse
To find the variance of the numbers k, k+1, k+2, we can use the formula for variance which is the average of the squared differences from the mean. First, we need to find the mean of the three numbers. Mean = (k + k + 1 + k + 2) / 3 = (3k + 3) / 3 = k + 1 So, the mean is k + 1. Next, we find the squared differences from the mean for each number: For k, the difference from the mean is k - (k+1) = -1. The squared difference is (-1)^2 = 1. For k+1, the difference from the mean is (k+1) - (k+1) = 0. The squared difference is 0^2 = 0. For k+2, the difference from the mean is (k+2) - (k+1) = 1. The squared difference is 1^2 = 1. Now we can find the variance: Variance = [(1^2 + 0^2 + 1^2) / 3] = 2/3 = 0.67 (rounded to two decimal places) Therefore, the answer is option (A) 2/3 or as a percentage approximately 66.7%.
Question 40 Rapport
If x is a positive real number, find the range of values for which 13x + 12 > 14x
Détails de la réponse
13x
+ 12
> 14x
= 2+3x6x
> 14x
= 4(2 + 3x) > 6x = 12x2 - 2x = 0
= 2x(6x - 1) > 0 = x(6x - 1) > 0
Case 1 (-, -) = x < 0, 6x -1 < 0
= x < 0, x < 16 = x < 16 (solution)
Case 2 (+, +) = x > 0, 6x -1 > 0 = x > 0, x > 16
Combining solutions in cases(1) and (2)
= x > 0, x < 16
= 0 < x < 16
Question 41 Rapport
The bar chart shows the distribution of marks scored by 60 pupils in a test in which the maximum score was 10. If the pass mark was 5, what percentage of the pupils failed the test?
Détails de la réponse
x012345678910f194710879821
no pupils who failed the test = 1 + 3 + 4 + 7 + 10
= 25
5 of pupils who fail = 2560 x 100%
= 41.70%
Question 42 Rapport
a cylindrical drum of diameter 56 cm contains 123.2 litres of oil when full. Find the height of the drum in centimeters
Détails de la réponse
To solve the problem, we need to use the formula for the volume of a cylinder, which is V = πr²h, where V is the volume, r is the radius, and h is the height of the cylinder. We are given the diameter of the drum, which is 56 cm. To find the radius, we need to divide the diameter by 2: radius (r) = diameter / 2 = 56 cm / 2 = 28 cm We are also given that the drum contains 123.2 litres of oil when full. To convert litres to cubic centimeters, we need to multiply by 1000: 123.2 litres * 1000 = 123200 cubic centimeters Now we can use the formula for the volume of a cylinder to find the height (h): V = πr²h h = V / (πr²) h = 123200 / (π28²) h ≈ 123200 / 2463.47 h ≈ 50.00 cm Therefore, the height of the drum is approximately 50.00 cm.
Question 43 Rapport
Find the value of k if k?3+?2 = k?3?2
Détails de la réponse
k√3+√2
= k√3−2
k√3+√2
x √3−√2√3−√2
= k√3−2
= k(√3−√2
)
= k√3−2
= k√3
- k√2
= k√3−2
k2 = √2
k = 2√2
= √2
Question 44 Rapport
Find the value of x in the diagram.
Détails de la réponse
30 + x = 100
x = 100 - 30
= 70o
Question 45 Rapport
TQ is tangent to circle XYTR, < YXT = 32∘
, RTQ = 40∘
. Find < YTR
Détails de la réponse
< TWR = < QTR = 40∘ (alternate segment)
< TWR = < TXR = 40∘ (Angles in the same segments)
< YXR = 40∘ + 32∘ = 72∘
< YXR + < YTR = 180∘ (Supplementary)
72∘ + < YTR = 180∘
< YTR = 180∘ - 72∘
= 108∘
Question 46 Rapport
If 10112 + x7 = 2510, solve for X.
Détails de la réponse
10112 + x7 = 2510 = 10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 2o
= 8 + 0 + 2 + 1
= 1110
x7 = 2510 - 1110
= 1410
71472R00R2
X = 207
Question 47 Rapport
Two chords PQ and RS of a circle intersected at right angles at a point inside the circle. If ∠QPR = 35o,find ∠PQS
Détails de la réponse
Since PQ and RS intersect inside the circle at right angles, then the line joining the point of intersection to the center of the circle will bisect both chords. Let O be the center of the circle, and let T be the point of intersection of the two chords. Then, angle QTR = 90 degrees and the angle subtended by chord PQ at the center O is twice angle QPR. Therefore, angle POQ = 2 * angle QPR = 70 degrees (since angle QPR = 35 degrees). Similarly, angle ROS = 70 degrees. Since PQ and RS are chords of a circle, then angle POQ = angle PTS and angle ROS = angle TQS. Thus, angle PTS + angle TQS = 140 degrees. Also, angle PTS + angle PTQ + angle QTS = 180 degrees (because they form a straight line). Therefore, angle TQS = 180 - 140 - 90 = 50 degrees. Since angle PQT = angle RQT (because they are opposite angles), then angle PQS = angle RQS = (180 - angle QTS)/2 = (180 - 50)/2 = 65 degrees. Therefore, the answer is 55 degrees.
Question 48 Rapport
If m and n are the mean and median respectively of the set of numbers 2, 3, 9, 7, 6, 7, 8, 5, find m + 2n to the nearest whole number
Détails de la réponse
To find the mean (m), you need to add up all the numbers in the set and then divide by the total number of numbers. In this case, the sum is 47 and the total number of numbers is 8, so the mean is 47/8 = 5.875. To find the median (n), you need to arrange the numbers in order from smallest to largest and then find the middle number. In this case, the numbers in order are: 2, 3, 5, 6, 7, 7, 8, 9. The middle number is 7, so the median is 7. To find m + 2n, you just need to substitute the values of m and n into the expression and solve. m + 2n = 5.875 + 2(7) = 19.875. To the nearest whole number, m + 2n is 20. Therefore, the answer is: 19.
Souhaitez-vous continuer cette action ?