Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
Which of these is observed when air is pumped out of a discharge tube without lowering its pressure
Détails de la réponse
Conduction takes places in gases when air is pumped out of a discharged tube under reduced pressure.
Question 2 Rapport
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Détails de la réponse
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Question 3 Rapport
Electrons were discovered by
Détails de la réponse
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Question 4 Rapport
In the molecular explanation, heat is transferred by the
Détails de la réponse
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Question 5 Rapport
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Détails de la réponse
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Question 6 Rapport
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Détails de la réponse
all the parallel forces must be equal in magnitude and direction
Question 7 Rapport
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Détails de la réponse
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Question 8 Rapport
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Détails de la réponse
P = 0.45cm, L = 60cm, Eff = 75/π%
| VR | (Screw | system) | = | 2πrP | = | 2πLP |
| M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Question 9 Rapport
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Détails de la réponse
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 10 Rapport
Ripple in a power supply unit is caused by
Détails de la réponse
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Question 11 Rapport
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Détails de la réponse
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Question 12 Rapport
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Détails de la réponse
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Question 13 Rapport
A metal rod has a length of 100cm at 200oC . At what temperature will its length be 99.4cm. If the linear expansivity of the material of the rod is 2 × 10−5C−1
Détails de la réponse
The linear expansivity of a material describes how its length changes with temperature. If the linear expansivity is given as 2 × 10^-5/°C, this means that for every 1°C change in temperature, the length of the material will change by 2 × 10^-5 times its original length. Given that the rod has a length of 100 cm at 200°C, we can use this information to find its length at a different temperature. If we let L be the length of the rod at temperature T, we can write the relationship as follows: L = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) To find the temperature at which the rod will have a length of 99.4 cm, we can set L equal to 99.4 cm and solve for T: 99.4 cm = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) 99.4 cm / 100 cm = 1 + 2 × 10^-5 * (T - 200°C) 0.994 = 1 + 2 × 10^-5 * (T - 200°C) -0.006 = 2 × 10^-5 * (T - 200°C) -0.006 / 2 × 10^-5 = T - 200°C -0.006 / (2 × 10^-5) = T - 200°C -0.006 / (2 × 10^-5) + 200°C = T So the temperature at which the rod will have a length of 99.4 cm is approximately equal to -0.006 / (2 × 10^-5) + 200°C, or -100°C. Therefore, the answer is -100°C.
Question 14 Rapport
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Détails de la réponse
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Question 15 Rapport
An alternating current can induce voltage because it has
Détails de la réponse
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Question 16 Rapport
Three resistors with resistance 200Ω, 500Ω and 1kΩ are connected in series. A 6v battery is connected to either end of the combination. Calculate the potential difference between the ends of 200Ω resistance.
Détails de la réponse
To calculate the potential difference between the ends of the 200Ω resistance, we need to use Ohm's Law, which states that the potential difference (V) across a resistor is equal to the current (I) flowing through the resistor multiplied by the resistance (R) of the resistor. First, we need to find the total resistance of the series combination of resistors. We add up the individual resistances: Total resistance = 200Ω + 500Ω + 1kΩ = 1.7kΩ Next, we can use Ohm's Law to find the current flowing through the circuit. We know that the battery voltage is 6V, and the total resistance is 1.7kΩ: I = V / R = 6V / 1.7kΩ = 0.0035A Now we can use Ohm's Law again to find the potential difference across the 200Ω resistor: V = IR = 0.0035A * 200Ω = 0.7V Therefore, the potential difference between the ends of the 200Ω resistance is 0.7V. The correct answer is option B.
Question 17 Rapport
A ray of light passes through the centre of curvature of a concave mirror and strikes the mirror. At what angle is the ray reflected?
Détails de la réponse
When a light ray passes through the center of curvature of a concave mirror and strikes the mirror, the reflected ray will be reflected back on itself, creating an angle of 0 degrees. Therefore, the correct answer is 0o.
Question 18 Rapport
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Détails de la réponse
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Question 19 Rapport
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Détails de la réponse
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Question 20 Rapport
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Détails de la réponse
| CT | = | C1 × C2 C1 + C2 |
| = | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Question 21 Rapport
Which of the following equations is the correct definition of the reactance of an indicator L?
Détails de la réponse
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Question 22 Rapport
The momentum of a car moving at a constant speed in a circular track
Détails de la réponse
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Question 23 Rapport
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Détails de la réponse
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Question 24 Rapport
An a.c of 1A at a frequency of 800 cycles per second flows through a coil, the inductance of which is 2.5mH and the resistance of which is 5Ω. What is the power absorbed in the Coil?
Détails de la réponse
I = 1A, F = 800 cycles/s = 800Hz
R = 5Ω, L = 2.5mH
P = I2
R = I2
× 5 = 5W
Question 25 Rapport
A man on a bench will exert the greatest pressure on the bench when he
Détails de la réponse
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Question 26 Rapport
The resultant capacitance in the figure above is
Détails de la réponse
For the parallel arrangement = 2 + 4 = 6μf
| For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
| 1CT | = | 1512 |
| CT | = | 1215 | = | 0.8μf |
Question 27 Rapport
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Détails de la réponse
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Question 28 Rapport
The limiting frictional force between two surface depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surface
Détails de la réponse
The correct answer is "I and IV only". The limiting frictional force between two surfaces depends on the normal reaction between the surfaces (I) and the nature of the surface (IV). The normal reaction is the force that the surfaces exert on each other perpendicular to the plane of contact. The greater the normal reaction, the greater the frictional force that can be applied before motion occurs. The nature of the surface is determined by factors such as roughness, hardness, and texture, which can affect the frictional force. The area of surface in contact (II) does not directly affect the limiting frictional force, although it can affect the force required to initiate motion. For example, if the area of contact is small, the pressure between the surfaces will be higher, making it harder to initiate motion. The relative velocity between the surfaces (III) also does not directly affect the limiting frictional force, although it can affect the force required to maintain motion. If the surfaces are already in motion, a lower force may be required to keep them moving than to initiate motion. In summary, the limiting frictional force between two surfaces depends primarily on the normal reaction and the nature of the surface, and is not directly affected by the area of contact or the relative velocity between the surfaces.
Question 29 Rapport
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Détails de la réponse
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Question 30 Rapport
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Détails de la réponse
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Question 31 Rapport
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Détails de la réponse
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Question 32 Rapport
According to kinetic molecular model, in gases
Détails de la réponse
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 33 Rapport
When water is boiling, it
Détails de la réponse
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Question 34 Rapport
Efficiency of conduction in liquids and gases compared to solids is
Détails de la réponse
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Question 35 Rapport
The volume of a stone having an irregular shape can be determined using?
Détails de la réponse
The volume of a stone with an irregular shape can be determined using a measuring cylinder. A measuring cylinder is a glass or plastic container with a narrow cylindrical shape and markings on the side to indicate the volume it contains. To determine the volume of an irregularly shaped stone, you would fill the measuring cylinder with water, carefully lower the stone into the water, and note the increase in the volume of the water. The difference in the volume of the water before and after the stone was added is equal to the volume of the stone. The meter rule, vernier calliper, and micrometer screw gauge are all measuring instruments, but they are not designed to measure the volume of irregularly shaped objects. The meter rule is a measuring tool used for measuring length. The vernier calliper is used for measuring the diameter of objects, and the micrometer screw gauge is used for precise measurements of small distances.
Question 36 Rapport
The mass of a nucleus is the
Détails de la réponse
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Question 37 Rapport
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Détails de la réponse
n = 200, S = 132 rev/min, v = 350m/s2
| f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
| λ | = | vf | = | 350440 | = | 0.875m |
Question 38 Rapport
The equilibrium position of objects in any field corresponds to situation of
Détails de la réponse
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Question 39 Rapport
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Détails de la réponse
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Question 40 Rapport
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Détails de la réponse
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Souhaitez-vous continuer cette action ?