Chargement....
|
Appuyez et maintenez pour déplacer |
|||
|
Cliquez ici pour fermer |
|||
Question 1 Rapport
Efficiency of conduction in liquids and gases compared to solids is
Détails de la réponse
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Question 2 Rapport
Lamps in domestic lightings are usually in
Détails de la réponse
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 3 Rapport
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Détails de la réponse
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Question 4 Rapport
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Détails de la réponse
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
| P1 V1 T1 | = | P2 V2 T1 |
| V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Question 5 Rapport
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Détails de la réponse
R = th = 2cm, d = 0.67cm
| n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Question 6 Rapport
The part of the human eye that does similar work as the diaphragm of a camera lens is the
Détails de la réponse
The part of the human eye that does similar work as the diaphragm of a camera lens is the iris. The iris is the colored part of the eye and is responsible for controlling the amount of light that enters the eye. Just like the diaphragm in a camera lens, the iris can adjust its size to allow more or less light into the eye. This helps to regulate the amount of light reaching the retina, which is responsible for sensing light and transmitting the image to the brain.
Question 7 Rapport
The resultant capacitance in the figure above is
Détails de la réponse
For the parallel arrangement = 2 + 4 = 6μf
| For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
| 1CT | = | 1512 |
| CT | = | 1215 | = | 0.8μf |
Question 8 Rapport
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Détails de la réponse
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Question 9 Rapport
According to kinetic molecular model, in gases
Détails de la réponse
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Question 10 Rapport
The earth's gravitational field intensity at its surface is about
(G = 6.7 × 10−11 Nm2 /kg2 , mass of the earth is 6 × 1024 kg, radius of the earth is 6.4 × 106 m, g on the earth = 9.8m/s2 )
Détails de la réponse
The earth's gravitational field intensity at its surface can be calculated using the formula: g = G * M / r^2 where G is the gravitational constant, M is the mass of the earth, r is the radius of the earth, and g is the gravitational field intensity at the surface of the earth. Substituting the given values, we get: g = (6.7 × 10^-11 Nm^2/kg^2) * (6 × 10^24 kg) / (6.4 × 10^6 m)^2 g = 9.8 N/kg (approx.) Therefore, the answer is 9.8N/kg.
Question 11 Rapport
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Détails de la réponse
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Question 12 Rapport
The distance between an object and its real image in a convex lens is 40cm. If the magnification of the image is 3, calculate the focal length of the lens
Détails de la réponse
u + v = 40
vu = 3
v = 3u
u + 3u = 40
4u = 40
u = 10cm
v = 3u = 30cm
f = uvu+v=10(30)10+30=30040
= 7.5 cm
Question 13 Rapport
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Détails de la réponse
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Question 14 Rapport
In the molecular explanation of conduction, heat is transferred by the
Détails de la réponse
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Question 15 Rapport
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Détails de la réponse
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Question 16 Rapport
Neutrons were discovered by
Détails de la réponse
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Question 17 Rapport
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Détails de la réponse
Depth of sea can be measured by echo, a reflected sound waves.
Question 18 Rapport
Which of the following readings cannot be determined with a meter rule?
Détails de la réponse
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Question 19 Rapport
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Détails de la réponse
all the parallel forces must be equal in magnitude and direction
Question 20 Rapport
A mixture of blue and red pigment when illuminated by white light will appear
Détails de la réponse
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Question 21 Rapport
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Détails de la réponse
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Question 22 Rapport
The mass of a nucleus is the
Détails de la réponse
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Question 23 Rapport
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Détails de la réponse
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Question 24 Rapport
The value of T in the figure above is
Détails de la réponse
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Question 25 Rapport
According to kinetic molecular model, in gases
Détails de la réponse
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 26 Rapport
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Détails de la réponse
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Question 27 Rapport
Radio waves belongs to the class of ware whose velocity is about
Détails de la réponse
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Question 28 Rapport
A single force which produces the same effect as a set of forces acting together at a point is known as the
Détails de la réponse
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Question 29 Rapport
Workdone on an object to bring it to a certain point in space is called
Détails de la réponse
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Question 30 Rapport
In semi-conductor, the carriers of current at room temperature are
Détails de la réponse
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Question 31 Rapport
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Détails de la réponse
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 32 Rapport
Which of the following statement about the electromagnet shown above is correct?
Détails de la réponse
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Question 33 Rapport
Which of the following is consistent with Charles' law?
I
II
III
IV.
Détails de la réponse
This is the correct graph. The graph is volume against 1/ temperature where temperature is in Celsius.
Question 34 Rapport
When two objects A and B are supplied with the same quantity of heat, the temperature change in A is obtained to be twice that of B. The mass of P is half that of Q. The ratio of the specific heat capacity of A to B is
Détails de la réponse
θA = 2θB ,
| mA | = | 12 | mB |
H = MCθ
mA
cA
θA
= mB
cB
θB
( 1/2 mB
)CA
(2θB
) = mB
cB
θB
| CA CB | = | 11 |
⇒ 1 : 1
Question 35 Rapport
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Détails de la réponse
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Question 36 Rapport
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Détails de la réponse
| v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
| v | = | 2 × 4x | = | 8 | ms |
Question 37 Rapport
Which of these is observed when air is pumped out of a discharge tube without lowering its pressure
Détails de la réponse
Conduction takes places in gases when air is pumped out of a discharged tube under reduced pressure.
Question 38 Rapport
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Détails de la réponse
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Question 39 Rapport
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Détails de la réponse
P = 0.2cm, L = r = 23cm
| VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Question 40 Rapport
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Détails de la réponse
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Souhaitez-vous continuer cette action ?