Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
The reaction of hydrogen and chlorine to produce hydrogen chloride gas is explosive in
Détails de la réponse
The reaction between hydrogen and chlorine to produce hydrogen chloride gas is explosive in sunlight. This is because sunlight contains a broad range of electromagnetic radiation, including ultraviolet (UV) light, which is energetic enough to initiate the reaction.
Here is a simplified explanation:
In contrast, other forms of light like diffused light, infrared light, and Raman light do not provide enough energy to initiate this explosive reaction because they lack the necessary UV component found in sunlight.
Question 2 Rapport
The volume occupied by 1 mole of an ideal gas at a temperature of 130 C and a pressure of 1.58 atm is
[ R = 0.082 atm dm3 K−1 mol−1 ]
Détails de la réponse
According to the Ideal gas equation, PV = nRT
Given: P = 1.58 atm, V = ?, n = 1 mole, R = 0.082, T= 13 + 273K = 286K
Substituting all the given parameters,
V = nRTP
V = 1×0.082×2861.58
V = 14.84 dm3
Question 3 Rapport
The hybridization scheme in ethyne is
Détails de la réponse
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Question 4 Rapport
Hydrochloric acid is regarded as a strong acid because it
Détails de la réponse
Hydrochloric acid (HCl) is regarded as a strong acid because it ionizes completely in water. This means that when HCl is dissolved in water, it breaks down entirely into hydrogen ions (H+) and chloride ions (Cl-). In a solution, there are no molecules of HCl left; only its ions are present.
This complete ionization results in a high concentration of hydrogen ions, which is a key characteristic of strong acids. Because there are more hydrogen ions available, hydrochloric acid can readily participate in chemical reactions, particularly those involving proton transfers, like neutralization reactions with bases.
In summary, the reason HCl is considered strong is due to its ability to consistently and completely ionize in an aqueous solution, not because of its physical state, source, or reactive nature with bases. Therefore, the property that defines it as a strong acid is that it ionizes completely.
Question 5 Rapport
The percentage of carbon(IV) oxide in air is
Détails de la réponse
The air we breathe is made up of a mixture of gases. The most abundant gases in the atmosphere are nitrogen and oxygen, but there are other gases present in smaller amounts, one of which is carbon dioxide, chemically known as carbon(IV) oxide.
Carbon dioxide makes up approximately 0.03% of the Earth's atmosphere by volume. This value can also be expressed in different terms, such as 300 parts per million (ppm). Even though it is a small percentage, carbon dioxide plays a significant role in maintaining the Earth's temperature through the greenhouse effect.
In summary, the percentage of carbon(IV) oxide in air is 0.03%.
Question 6 Rapport
At a given temperature and pressure, a gas X diffuses twice as fast as gas Y. It follows that
Détails de la réponse
To solve the problem, we can use **Graham's law of effusion**. This law states that the rate of effusion (or diffusion) of a gas is inversely proportional to the square root of its molar mass. Mathematically, this is represented as:
Rate of diffusion of Gas X / Rate of diffusion of Gas Y = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
According to the given information, gas X diffuses **twice as fast** as gas Y. This implies:
2 = sqrt(Molar mass of Gas Y / Molar mass of Gas X)
To eliminate the square root, square both sides of the equation:
(2)^2 = Molar mass of Gas Y / Molar mass of Gas X
This simplifies to:
4 = Molar mass of Gas Y / Molar mass of Gas X
Rearranging the equation, we find:
Molar mass of Gas Y = 4 * Molar mass of Gas X
This means that **Gas Y is four times as heavy as Gas X**. Therefore, the correct statement is:
Question 7 Rapport
An example of a physical change is
Détails de la réponse
An example of a physical change is the boiling of water. Let me explain why this is considered a physical change:
A physical change is a change where the substances involved do not change their chemical composition, meaning they remain the same substance, just in a different form or appearance. In the case of boiling water, when water is heated to its boiling point, it changes from a liquid to a gas (steam), but it is still comprised of water molecules (H2O). The change is reversible, so the gas can condense back into liquid water without any new substance being formed.
On the other hand:
Thus, boiling water is an excellent example of a physical change as it involves only the change in the state of matter without altering the substance's identity.
Question 8 Rapport
The principle which states that no two electrons in the same orbitals of an atom have same value for all four quantum numbers is the
Détails de la réponse
The principle that states that no two electrons in the same orbitals of an atom can have the same value for all four quantum numbers is the Pauli Exclusion Principle.
To understand this principle, it's important to know a bit about the structure of an atom and what quantum numbers are:
Quantum Numbers:
1. **Principal Quantum Number (n):** This describes the energy level or shell of the electron.
2. **Angular Momentum Quantum Number (l):** This describes the subshell or shape of the orbital (s, p, d, f...).
3. **Magnetic Quantum Number (ml):** This describes the specific orbital within a subshell where the electron is located.
4. **Spin Quantum Number (ms):** This describes the spin direction of the electron, which can be either +1/2 or -1/2.
The Pauli Exclusion Principle asserts that each electron in an atom has a unique set of these four quantum numbers. While electrons can share the first three quantum numbers if they are in the same orbital (meaning they share the same energy level, the same subshell, and the same specific orbital within that subshell), they must have different Spin Quantum Numbers. This means that in any given orbital, one electron can have a spin of +1/2 and the other must have a spin of -1/2. This principle is fundamental in explaining the electronic structure of atoms and, consequently, the behavior and properties of elements.
Question 9 Rapport
Strong acids can be distinguished from weak acids by any of the following methods, EXCEPT
Détails de la réponse
To distinguish between strong acids and weak acids, we can employ several methods based on their chemical properties:
Conductivity Measurement: Strong acids dissociate completely in water, releasing more ions. Because ion concentration is directly related to electrical conductivity, strong acids exhibit higher conductivity than weak acids, which only partially dissociate.
Litmus Paper: This method helps determine if a solution is acidic or basic but does not provide detailed information about the strength (strong or weak) of an acid. Both strong and weak acids turn blue litmus red. Therefore, **litmus paper cannot effectively distinguish between a strong and a weak acid.**
Measurement of pH: Strong acids have a lower pH because they fully dissociate to release more hydrogen ions (H+), whereas weak acids have a relatively higher pH as they do not dissociate completely. Thus, pH measurement can distinguish the extent of acidity.
Measurement of Heat of Reaction: The heat of reaction can give insights into the strength of an acid because it involves the degree of ionization and the energetics associated with it. A strong acid will exhibit a different calorimetric response compared to a weak acid.
In summary, **litmus paper is not suitable for distinguishing between a strong and a weak acid**, as it only indicates acidity but does not reveal the strength of the acid.
Question 10 Rapport
Which of the following is used in forming slag in the blast furnace for the extraction of iron?
Détails de la réponse
In the process of extracting iron in a blast furnace, CaCO3, or calcium carbonate, plays a crucial role in forming slag. Here is a simple and comprehensive explanation of how it works:
1. Role of Calcium Carbonate (CaCO3):
Calcium carbonate is commonly used as a flux in the blast furnace. When it is introduced into the furnace, it undergoes a decomposition reaction due to the high temperatures, breaking down into calcium oxide (CaO) and carbon dioxide (CO2).
2. Formation of Slag:
The calcium oxide (CaO) produced then reacts with silicon dioxide (SiO2) present in the iron ore. This reaction forms a liquid slag of calcium silicate. The slag serves two main functions:
Thus, calcium carbonate (CaCO3) is crucial for forming slag by providing the necessary calcium oxide (CaO) that reacts with impurities to form slag during the extraction of iron in a blast furnace.
Question 11 Rapport
23892 U + 10 n → 23992 U
The process above produces
Détails de la réponse
The process described appears to depict a nuclear reaction involving a nuclear transmutation. Let's break down the process:
1. The starting element is initially denoted as "23892", which represents Uranium-238. In nuclear notation, "23892" indicates an atomic mass number of 238 and an atomic number of 92.
2. The next step so happens with the element "238"; however, the numbers remain: "92" indicates that the atomic number is unchanged, suggesting no change in the element. This often means a step in between of hypothetical notation.
3. Then there's the occurrence of adding a "U + 10", which again leaves the original atomic number "92".
4. In subsequent steps, it seems that the number "n" transitions to become "23992". The mass number has increased by one unit, turning the initial isotope into "23992", which represents Uranium-239.
The key point here is the transition from Uranium-238 to Uranium-239, which typically happens through the process of a neutron absorption in which a neutron is added, resulting in a change of the mass number. Such a process often leads to the creation of a radioactive isotope.
Therefore, the process described is indicative of producing a radioactive isotope, specifically Uranium-239.
Question 12 Rapport
A gas when mixed with oxygen, it produces a very hot and early controllable flame. What is the name of the flame and where is it used?
Détails de la réponse
The Oxy-ethylene flame is a type of flame produced when oxygen is mixed with a gas called ethylene. This mixture results in a flame that is extremely hot and can be easily controlled. Such a flame is often used in industrial applications related to cutting and welding metals. The heat generated by an oxy-ethylene flame is sufficient to melt metals, allowing them to be welded together or cut apart efficiently.
Question 13 Rapport
A liquid hydrocarbon obtained from fractional distillation of coal tar that is used in the pharmaceutical industry is
Détails de la réponse
Benzene is a liquid hydrocarbon that is obtained from the fractional distillation of coal tar, and it is extensively used in the pharmaceutical industry. Let me break this down for you:
That's why benzene plays an important role in the pharmaceutical industry, making it a highly valued product obtained through the distillation of coal tar.
Question 14 Rapport
What accounts for the low melting and boiling points of covalent molecules?
Détails de la réponse
The low melting and boiling points of covalent molecules are primarily due to the presence of weak intermolecular forces between the molecules. While covalent molecules consist of atoms bonded together by strong covalent bonds, the forces between separate molecules, known as van der Waals forces or London dispersion forces, are much weaker. These weak forces require significantly less energy to overcome, which explains why covalent molecules tend to have lower melting and boiling points.
Although covalent molecules have definite shapes and possess shared electron pairs, these characteristics have little influence on the melting and boiling points. The focus is instead on how much energy is needed to separate the molecules from one another.
Covalent molecules are not typically three-dimensional structures like ionic compounds or metals which form intricate lattices and require more energy to disrupt. Thus, the primary reason for their lower melting and boiling points is the presence of weak intermolecular forces that can be more easily overcome with minimal energy input.
Question 15 Rapport
An oxide of nitrogen that can rekindle a glowing splint is
Détails de la réponse
The ability to rekindle a glowing splint is an indicator of the presence of an oxidizing agent, typically oxygen or a substance that releases oxygen. Among oxides of nitrogen, only a few are capable of doing this.
Nitrogen(I) oxide, commonly known as nitrous oxide (N2O), is not a strong enough oxidizer to rekindle a glowing splint.
Nitrogen(II) oxide, known as nitric oxide (NO), is not stable in the presence of oxygen and does not have the ability to rekindle a glowing splint because it does not actively release oxygen.
Nitrogen(IV) oxide or nitrogen dioxide (NO2), can support combustion by releasing oxygen as it decomposes. It is a brown gas and an effective oxidizer.
Dinitrogen tetraoxide (N2O4) is in equilibrium with nitrogen dioxide (NO2). However, at standard conditions, it is not as effective an oxidizer for rekindling a glowing splint as pure NO2.
In conclusion, the oxide of nitrogen that can rekindle a glowing splint is nitrogen(IV) oxide or nitrogen dioxide (NO2) due to its ability to release oxygen and support combustion.
Question 16 Rapport
An organic compound with general formula RCOR' is an
Détails de la réponse
The general formula RCOR' represents a class of organic compounds known as ketones. In this formula, R and R' are alkyl groups, which are chains of carbon and hydrogen atoms. The CO in the middle is a carbonyl group, which consists of a carbon atom double-bonded to an oxygen atom. Therefore, with the presence of two alkyl groups on either side of the carbonyl group, the compound is categorized as a ketone, scientifically referred to as an alkanone.
Here is a simple breakdown of the terms:
Hence, by looking at the general formula RCOR', the organic compound in question is undoubtedly an alkanone.
Question 17 Rapport
The product formed when ethyne is passed through a hot tube containing finely divided iron is
Détails de la réponse
When **ethyne** (also known as acetylene) is passed through a hot tube containing finely divided iron, a process called decomposition occurs. The heat causes the ethyne molecules to break down, and under these conditions, they **re-combine** to form structures that result in more complex molecules.
The key transformation involves the conversion of these ethyne molecules into **aromatic compounds**. Aromatic compounds, such as **benzene**, have a distinct ring structure and are characterized by **stability** due to resonance (a phenomenon where electrons are delocalized over a certain structure, providing extra stability).
Thus, when ethyne is passed through a hot iron tube, it undergoes trimerization to form benzene, an **aromatic** compound. Therefore, the product formed is **aromatic**.
Question 18 Rapport
An example of highly unsaturated hydrocarbon is
Détails de la réponse
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Question 19 Rapport
The indicator used in a titration between strong acid and weak base is
Détails de la réponse
A titration is a process used to determine the concentration of an unknown solution by adding a solution of known concentration. The indicator used in a titration is a substance that changes color at the specific pH level of the solution, which usually happens at the equivalence point.
For a titration between a strong acid and a weak base, the solution at the equivalence point is slightly acidic. This is because the salt formed as a result of the neutralization reaction can undergo hydrolysis, producing an excess of hydronium ions (H₃O⁺) which makes the solution acidic.
Among the provided indicators, methyl orange is the most suitable for indicating this type of reaction because it changes color in an acidic pH range of about 3.1 to 4.4. It shifts from red at a pH below 3.1 to yellow at a pH above 4.4.
Therefore, for a titration involving a strong acid and a weak base, methyl orange is the appropriate indicator as it can show the end point effectively when the solution is slightly acidic. The pH at the equivalence point falls within the color change range of methyl orange.
Question 20 Rapport
Solubility curve is a plot of solubility against
Détails de la réponse
A solubility curve is a plot of solubility against temperature. Let me explain in a simple way:
Solubility refers to the amount of a substance (solute) that can dissolve in a given quantity of solvent to form a homogeneous solution at a specified condition. The most common factor that affects solubility is the temperature.
Here's why a solubility curve typically involves temperature:
Therefore, plotting solubility against temperature in a solubility curve allows us to visualize and understand how solubility changes with variations in temperature.
Question 21 Rapport
A radioactive element of mass 1g has half-life of 2 minutes, what fraction of the substance would have disintegrated after 10 minutes?
Détails de la réponse
Originalmass2n
= Residual mass
Where n = number of activity = exposuretimehalflife
Given:
Original mass = 1g, exposure time = 10 minutes , half life = 2 minutes, Residual mass = ?
Substituting all the given parameters appropriately, we have
n = 102
n = 5
Originalmass2n = Residual mass
125
5 = Residual mass
132 = Residual mass
Residual mass = 132
or 0.03125g
Question 22 Rapport
The electronic configuration of an atom of Nitrogen is 1s2 2s2 2p1x 2p1y 2p1z because the atom is
Détails de la réponse
The electronic configuration of nitrogen is given as: 1s2 2s2 2px1 2py1 2pz1.
This configuration suggests that nitrogen has 7 electrons, as follows:
This is the **ground state** electron configuration of nitrogen, meaning that the atoms have electrons in the **lowest possible energy levels**. It demonstrates nitrogen's **stable configuration**, where it has half-filled p orbitals, each with a single electron. This configuration obeys Hund's Rule, which states that every orbital in a subshell gets one electron before any one orbital gets two (due to electron repulsion). It also obeys the Aufbau principle which suggests electrons fill orbitals starting from the lowest energy level.
Therefore, this configuration indicates that the atom is simply obeying rules governing electron configuration. The electrons are in their lowest energy orbitals, consistent with the principles that direct electron arrangement in an atom, ensuring stability without being excited or unstable. There are no **energy changes** being depicted nor is the atom in an **excited state**—it is showing the normal ground state.
Question 23 Rapport
The element which can combine with oxygen to form an acid anhydride of the form XO2 is
Détails de la réponse
An Acid anhydride can be defined as a non-metal oxide which forms an acidic solution when reacted with water.
Sulphur is the element that can combine with oxygen to form an acid anhydride of the form XO2 .
An acid oxide is a compound that forms an acid when it reacts with water. Non-metals in groups 4–7 form acidic oxides.
Question 24 Rapport
When a specie undergoes oxidation, its
Détails de la réponse
When a species undergoes oxidation, it experiences an increase in its oxidation number. Oxidation is a chemical process where a species loses electrons. In terms of oxidation number, electrons have a negative charge, so losing them results in an increase in charge. Thus, the oxidation number of the species becomes more positive or less negative.
To help understand, consider sodium (Na) reacting with chlorine (Cl2) to form sodium chloride (NaCl):
This change clearly shows that when sodium is oxidized, its oxidation number increases.
Therefore, the correct explanation is: a species undergoing oxidation will have its oxidation number increase.
Question 25 Rapport
Biodegradable pollutants are not safe in water systems because they can cause
Détails de la réponse
Biodegradable pollutants are substances that can be broken down by natural processes and microorganisms. However, when they are present in water systems, they can lead to several environmental and health issues. One of the main concerns is their potential to cause ill health. Here's why:
When biodegradable pollutants such as organic waste are introduced into water bodies, they are decomposed by bacteria and other microorganisms. This process consumes dissolved oxygen in the water. As the oxygen levels decrease, aquatic life such as fish and plants may suffer or die due to a lack of oxygen, disrupting the entire aquatic ecosystem.
This situation is known as eutrophication, which can lead to the excessive growth of algae, commonly referred to as algal blooms. These blooms often produce toxins that are harmful to both aquatic life and humans. Furthermore, when this polluted water is used for drinking, agriculture, or recreational purposes, it poses serious health risks to humans. These risks may include gastrointestinal infections, neurological disorders, and skin problems.
In addition, as the pollutants decompose, foul smells may be released, which can affect air quality in the vicinity, although the primary concern with biodegradable pollutants in water is related to how they affect water quality and health.
Therefore, it is crucial to properly manage and treat biodegradable pollutants before they enter water systems to prevent these health hazards. Failure to do so can result in significant environmental and health issues.
Question 26 Rapport
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Détails de la réponse
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Question 27 Rapport
The table above shows the formulae of some ions. In which of these compounds is the formula not correct?
Détails de la réponse
To assess the correctness of the chemical formulae for the given compounds, let's break down each compound:
Aluminium Tetraoxosulphate(VI), Al2(SO4)3:
Aluminium ion is denoted as Al3+, and the sulphate ion is SO42-. To balance the charges between the positive and negative ions:
2 x (+3) from aluminium ions = +6
3 x (-2) from sulphate ions = -6
Thus, the charges balance out, making the formula correct.
Calcium Trioxonitrate(V), Ca(NO3)2:
Calcium ion is Ca2+, and the nitrate ion is NO3-. To balance the charges:
1 x (+2) from calcium ion = +2
2 x (-1) from nitrate ions = -2
The charges balance out, therefore, this formula is also correct.
Iron(III) Bromide, Fe3Br:
Iron(III) ion is Fe3+, and bromide ion is Br-. Each iron ion would pair with three bromide ions to balance the charges:
FeBr3, where:
1 x (+3) from iron = +3
3 x (-1) from bromide = -3
The charges balance out in the correct formula which should be FeBr3, making the given formula Fe3Br incorrect.
Potassium Sulphide, K2S:
Potassium ion is K+, and sulphide ion is S2-. To balance the charges:
2 x (+1) from potassium ions = +2
1 x (-2) from sulphide ion = -2
The charges balance out, making this formula correct.
Therefore, the compound with the incorrect formula is Iron(III) Bromide where the proper chemical formula should be FeBr3, not Fe3Br.
Question 28 Rapport
25.0g of potassium chloride were dissolved in 80g of distilled water at 300 C. Calculate the solubility of the solute in mol dm3 . [K =39, Cl = 35.5]
Détails de la réponse
To calculate the solubility of potassium chloride (KCl) in mol dm3, we need to follow these steps:
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Moles of KCl = Mass of KCl / Molar mass of KCl = 25.0 g / 74.5 g/mol = 0.3356 mol
Convert ml to liters: 80 ml = 0.080 L
Concentration = Moles of solute / Volume of solvent in liters = 0.3356 mol / 0.080 L = 4.195 mol/dm3
The solubility of potassium chloride at 30°C in mol/dm3 is therefore approximately 4.2 mol/dm3.
Question 29 Rapport
The main constituent of water-glass is
Détails de la réponse
The main constituent of water-glass is sodium trioxosilicate(IV). Water-glass, also known as liquid glass, is common terminology for a mixture of sodium silicate and water. The primary chemical component in water-glass is sodium silicate, which includes sodium ions (Na+) bonded with silicate ions (SiO44-).
Essentially, when sodium silicate is dissolved in water, it results in a viscous liquid that can be utilized in various applications such as in cements, passive fire protection, textile and lumber processing, and as a sealant. Sodium trioxosilicate(IV) forms a significant part of this mixture as it reacts with other compounds to create a hardened, glass-like structure when it dries. Therefore, when water-glass is mentioned, it is mostly referring to solutions that have sodium trioxosilicate(IV) as their principal compound.
Question 30 Rapport
Calculate the mass of Magnesium that will be liberated from its salt by the same quantity of electricity that liberated 16.0 g of Silver.
[Mg = 24.0, Ag = 108 ]
Détails de la réponse
To solve this problem, we must consider the concept of electrochemistry and Faraday's laws of electrolysis. These laws are crucial for determining the mass of a substance liberated during electrolysis.
Faraday's first law states that the mass of a substance liberated is directly proportional to the quantity of electricity that passes through the electrolyte. The mass can be calculated using the formula:
m = (Q * M) / (n * F)
Where:
For silver (Ag), the chemical reaction at the cathode is:
Ag⁺ + e⁻ → Ag
This shows that **1 mole of electrons** is required to discharge **1 mole** of silver ions.
For magnesium (Mg), the chemical reaction at the cathode is:
Mg²⁺ + 2e⁻ → Mg
This means that **2 moles of electrons** are required to discharge **1 mole** of magnesium ions.
Given:
First, find the number of moles of Ag liberated:
Number of moles of Ag = 16 g / 108 g/mol = 0.1481 mol
The same quantity of electricity will be used to liberate an equivalent in moles of electrons for Mg.
0.1481 moles of Ag require 0.1481 moles of electrons, equivalent to:
0.1481 moles of electrons for Mg. Since Mg requires 2 moles of electrons for 1 mole of Mg:
Number of moles of Mg = 0.1481 / 2 = 0.07405 mol
Finally, calculate the mass of Mg liberated:
m = 0.07405 mol * 24 g/mol = 1.7772 g
Rounding this to the closest answer provided:
The mass of magnesium that will be liberated is approximately **1.78 g**.
Question 31 Rapport
An organic compound contains 53.1% Carbon, 6.2% Hydrogen, 12.4% Nitrogen, and 28.3% Oxygen by mass. What is the molecular formula of the compound if its vapour density is 56.5? [ C =12, H = 1, N = 14, O = 16].
Détails de la réponse
To find the molecular formula of the compound, follow these steps:
1. Determine the Empirical Formula:
Start by assuming you have 100 grams of the compound. This means you have:
Now, convert these masses to moles using their atomic masses (C = 12, H = 1, N = 14, O = 16):
Next, divide each by the smallest number of moles to get the simplest ratio:
This gives us the empirical formula: C5H7NO2.
2. Determine the Molecular Formula:
The molecular formula is a multiple of the empirical formula. To determine this multiple, we need to find the empirical formula mass and compare it with the molar mass derived from the given vapor density.
Calculate the empirical formula mass:
The molar mass can be calculated from the vapor density:
Now, find the ratio of the molar mass to the empirical formula mass:
This ratio is approximately 1, indicating the molecular formula is the same as the empirical formula. Since empirical formulas typically should perfectly match the atomic proportions we derive from experiments, our calculations regarding the assumptions on the vapour and empirical formula mass remains our best match.
Therefore, the molecular formula is C5H7NO2.
Question 32 Rapport
Esterification reaction is analogous to
Détails de la réponse
The **esterification reaction** is analogous to a **condensation reaction**. In chemistry, a **condensation reaction** is a type of chemical reaction where two molecules or functional groups combine to form a larger molecule, with the simultaneous loss of a small molecule, usually water. **Esterification** specifically involves the reaction between an acid (often a carboxylic acid) and an alcohol, resulting in the formation of an **ester** and the release of a molecule of water.
To explain this further, in an esterification reaction:
Conversely, the other types of reactions you've mentioned have different mechanisms:
Therefore, given the nature of how molecules join and release water, it's clear that the **esterification reaction** is analogous to a **condensation reaction**.
Question 33 Rapport
The IUPAC nomenclature of the compound above is
Détails de la réponse
The IUPAC nomenclature of the compound above is 2-methylpropan-2-ol.
Question 34 Rapport
Fog is a colloid in which
Détails de la réponse
**Fog** is a type of colloid, which is a mixture where very small particles of one substance are evenly distributed throughout another substance. In the case of fog, it consists of tiny **liquid droplets** that are dispersed in a **gas**. Specifically, these are tiny droplets of water suspended in the air. When you walk through fog, you are essentially walking through air that contains these minute water droplets.
Thus, the correct description of fog as a colloid is that it consists of **liquid particles dispersed in a gas medium**. The liquid here is water, and the gas is air.
Question 35 Rapport
The compound of Copper used as a fungicide is
Détails de la réponse
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Question 36 Rapport
A type of isomerism that ClCH=CHCl can exhibit is
Détails de la réponse
ClCH=CHCl can exhibit geometrical isomerism and positional isomerism. ClCH=CHCl can exhibit positional isomerism because the positions of the functional groups or substituent atoms are different. Positional isomerism occurs when compounds with the same molecular formula have different properties due to the difference in the position of a functional group, multiple bond, or branched chain.
Question 37 Rapport
In the graph above, y represents
Détails de la réponse
To understand what y represents in the graph, we need to think about what graphs in chemistry, specifically regarding energy changes in reactions, generally show.
Chemical reaction energy diagrams often depict a reaction's energy change as a curve from the reactants to the products, showing different energy levels throughout the process. The energy required to start a reaction or to transform the reactants into an activated complex (also known as the transition state) is crucial.
The height of this energy barrier is called the activation energy. This is the minimum amount of energy required to start a chemical reaction. The activation energy is represented by the peak in the energy graph between the reactant energy level and the top of the curve.
Therefore, in this context, y represents the activation energy needed for the reaction to proceed. Understanding activation energy is vital as it determines how quickly a reaction will occur. Reactions with a high activation energy tend to happen more slowly because it is less probable that the necessary energy for the reaction to occur spontaneously will be present.
Question 38 Rapport
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as
Détails de la réponse
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as esterification.
An alkanoic acid, also known as a carboxylic acid, is a type of organic acid that contains a carboxyl group (-COOH). An alkanol, commonly referred to as an alcohol, contains a hydroxyl group (-OH).
When an alkanoic acid reacts with an alkanol in the presence of an acid catalyst (commonly sulfuric acid), they combine to form an ester and water. This particular reaction is termed esterification. The acid catalyst speeds up the reaction by donating protons, which helps in breaking and forming new bonds.
Here's a simplified view of the reaction:
1. Alkanoic Acid (R-COOH) + Alkanol (R'-OH) -> Ester (R-COOR') + Water (H2O)
The key characteristics of esterification are:
Therefore, in summary, the process described is esterification.
Question 39 Rapport
The group VIII elements are the inert gases because they
Détails de la réponse
The group VIII elements, also known as the noble gases, are called inert gases primarily because they all have completely filled valence shells. In a very simplified explanation:
1. Complete Valence Shells: All the noble gases have their outermost shells completely filled with electrons. This configuration is considered very stable and requires no additional electrons to reach stability, unlike other elements that may gain, lose, or share electrons to achieve a full valence shell.
2. Highly Stable: Due to this completely filled valence shell, the noble gases do not readily react with other elements to form compounds. Their stability comes from the fact that they do not need to bond with other elements to achieve a more stable state.
3. Examples: For instance, Helium (He) has two electrons filling its first shell, Neon (Ne) has eight electrons in its second shell, and similarly, other noble gases also have fully occupied outer shells.
This property is why the noble gases are termed "inert," which means they are largely non-reactive.
Question 40 Rapport
The shape of the molecule of Carbon(IV) oxide is
Détails de la réponse
The shape of the molecule of Carbon(IV) oxide, also known as carbon dioxide (CO2), is linear. This is because of the following reasons:
Due to this arrangement, carbon dioxide has a symmetric shape, making it non-polar despite having polar covalent bonds. The pulling forces of the two oxygen atoms on either side of the carbon atom cancel each other out, reinforcing its linear configuration.
Souhaitez-vous continuer cette action ?