Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
A binary operation ⊕ om real numbers is defined by x ⊕ y = xy + x + y for two real numbers x and y. Find the value of 3 ⊕ - 23 .
Détails de la réponse
N + Y = XY + X + Y
3 + -23
= 3(- 23
) + 3 + (- 23
)
= -2 + 3 -23
= 1−21−3
= 13
Question 2 Rapport
What is the size of each interior angle of a 12-sided regular polygon?
Détails de la réponse
Interior angle = (n - 2)180
but, n = 12
= (12 -2)180
= 10 x 180
= 1800
let each interior angle = x
x = (n−2)180n
x = 180012
= 150o
Question 3 Rapport
I how many was can the letters of the word ELATION be arranged?
Détails de la réponse
ELATION
Since there are 7 letters. The first letter can be arranged in 7 ways, , the second letter in 6 ways, the third letter in 5 ways, the 4th letter in four ways, the 3rd letter in three ways, the 2nd letter in 2 ways and the last in one way.
therefore, 7 x 6 x 5 x 4 x 3 x 2 x 1 = 7! ways
Question 4 Rapport
The perpendicular bisector of a line XY is the locus of a point B. whose distance from Y is always twice its distance from X. C
Détails de la réponse
Question 5 Rapport
Factorize completely 9y2 - 16X2
Détails de la réponse
9y2 - 16x2
= 32y2 - 42x2
= (3y - 4x)(3y +4x)
Question 6 Rapport
Solve the inequality -6(x + 3) ≤ 4(x - 2)
Détails de la réponse
-6(x + 3) ≤
4(x - 2)
-6(x +3) ≤
4(x - 2)
-6x -18 ≤
4x - 8
-18 + 8 ≤
4x +6x
-10x ≤
10x
10x ≤
-10
x ≤
1
Question 7 Rapport
Which of these angles can be constructed using ruler and a pair of compasses only?
Détails de la réponse
Question 8 Rapport
The bar chart above shows the distribution of SS2 students in a school.
Find the total number of students
Détails de la réponse
Question 9 Rapport
If 2q35 = 778, find q
Détails de la réponse
2q35 = 778
2 x 52 + q x 51 + 3 x 50 = 7 x 81 + 7 x 80
2 x 25 + q x 5 + 3 x 1 = 7 x 8 + 7 x 1
50 + 5q + 3 = 56 + 7
5q = 63 - 53
q = 105
q = 2
Question 10 Rapport
A solid metal cube of side 3 cm is placed in a rectangular tank of dimension 3, 4 and 5 cm. What volume of water can the tank now hold
Détails de la réponse
Volume of cube = L3
33 = 27cm3
volume of rectangular tank = L x B X h
= 3 x 4 x 5
= 60cm3
volume of H2O the tank can now hold
= volume of rectangular tank - volume of cube
= 60 - 27
= 33cm3
Question 11 Rapport
Class Interval3−56−89−11Frequency222 .
Find the standard deviation of the above distribution.
Détails de la réponse
Class Interval3−36−89−11x4710f222f−x81420|x−¯x|2909|x−¯x|218018
¯x
= ∑fx∑f
= 8+14+202+2+2
= 426
¯x
= 7
S.D = √∑f(x−¯x)2∑f
= √18+0+186
= √366
= √6
Question 12 Rapport
Raial has 7 different posters to be hanged in her bedroom, living room and kitchen. Assuming she has plans to place at least a poster in each of the 3 rooms, how many choices does she have?
Détails de la réponse
The first poster has 7 ways to be arranges, the second poster can be arranged in 6 ways and the third poster in 5 ways.
= 7 x 6 x 5
= 210 ways
or 7P3
= 7!(7−3)!
= 7!4!
= 7×6×5×4!4!
= 210 ways
Question 13 Rapport
Evaluate ∣∣ ∣∣42−123−1−113∣∣ ∣∣
Détails de la réponse
∣∣ ∣∣42−123−1−113∣∣ ∣∣
4 ∣∣∣3−113∣∣∣
-2 ∣∣∣2−1−13∣∣∣
-1 ∣∣∣23−11∣∣∣
4[(3 x 3) - (-1 x 1)] -2 [(2x 3) - (-1 x -1)] -1 [(2 x 1) - (-1 x 3)]
= 4[9 + 1] -2 [6 - 1] -1 [2 + 3]
= 4(10) - 2(5) - 1(5)
= 40 - 10 - 5
= 25
Question 14 Rapport
Find the remainder when X3 - 2X2 + 3X - 3 is divided by X2 + 1
Détails de la réponse
X2 + 1 X−2√X3−2X2+3n−3
= −6X3+n−2X2+2X−3
= (−2X2−2)2X−1
Remainder is 2X - 1
Question 15 Rapport
In how many ways can five people sit round a circular table?
Détails de la réponse
The first person will sit down and the remaining will join.
i.e. (n - 1)!
= (5 - 1)! = 4!
= 24 ways
Question 16 Rapport
If x varies directly as square root of y and x = 81 when y = 9, Find x when y = 179
Détails de la réponse
x α√y
x = k√y
81 = k√9
k = 813
= 27
therefore, x = 27√y
y = 179
= 169
x = 27 x √169
= 27 x 43
dividing 27 by 3
= 9 x 4
= 36
Question 17 Rapport
From the venn diagram above, the complement of the set P∩
Q is given by
Détails de la réponse
Question 18 Rapport
Find ∫10 cos4 x dx
Détails de la réponse
∫10
cos4 x dx
let u = 4x
dydx
= 4
dx = dy4
∫10
cos u. dy4
= 14
∫
cos u du
= 14
sin u + k
= 14
sin4x + k
Question 19 Rapport
The pie chart shows the distribution of courses offered by students. What percentage of the students offer English?
Détails de la réponse
90360×100=14×100
=25%
Question 20 Rapport
The midpoint of P(x, y) and Q(8, 6). Find x and y. midpoint = (5, 8)
Détails de la réponse
P(x, y) Q(8, 6)
midpoint = (5, 8)
x + 8 = 5
y+62
= 8
x + 8 = 10
x = 10 - 8 = 2
y + 6 = 16
y + 16 - 6 = 10
therefore, P(2, 10)
Question 21 Rapport
No012345Frequency143825 .
From the table above, find the median and range of the data respectively.
Détails de la réponse
Question 22 Rapport
The sum of four consecutive integers is 34. Find the least of these numbers
Détails de la réponse
Let the numbers be a, a + 1, a + 2, a + 3
a + a + 1 + a + 2 + a + 3 = 34
4a = 34 - 6
4a = 28
a = 284
= 7
The least of these numbers is a = 7
Question 23 Rapport
If the numbers M, N, Q are in the ratio 5:4:3, find the value of 2N−QM
Détails de la réponse
M:N:Q == 5:4:3
i.e M = 5, N = 4, Q = 3
Substituting values into equation, we have...
2N−QM
= 2(4)−35
= 8−35
= 55
= 1
Question 24 Rapport
In the diagram, STUV is a straight line. < TSY = < UXY = 40o and < VUW = 110o. Calculate < TYW
Détails de la réponse
< TUW = 110∘
= 180∘
(< s on a straight line)
< TUW = 180∘
- 110∘
= 70∘
In △
XTU, < XUT + < TXU = 180∘
i.e. < YTS + 70∘
= 180
< XTU = 180 - 110∘
= 70∘
Also < YTS + < XTU = 180 (< s on a straight line)
i.e. < YTS + < XTU - 180(< s on straight line)
i.e. < YTS + 70∘
= 180
< YTS = 180 - 70 = 110∘
in △
SYT + < YST + < YTS = 180∘
(Sum of interior < s)
SYT + 40 + 110 = 180
< SYT = 180 - 150 = 30
< SYT = < XYW (vertically opposite < s)
Also < SYX = < TYW (vertically opposite < s)
but < SYT + < XYW + < SYX + < TYW = 360
i.e. 30 + 30 + < SYX + TYW = 360
but < SYX = < TYW
60 + 2(< TYW) = 360
2(< TYW) = 360∘
- 60
2(< TYW) = 300∘
TYW = 3002
= 150∘
< SYT
Question 25 Rapport
A chord of circle of radius 7cm is 5cm from the centre of the maximum possible area of the square?
Détails de la réponse
From Pythagoras theorem
|OA|2 = |AN|2 + |ON|2
72 = |AN|2 + (5)2
49 = |AN|2 + 25
|AN|2 = 49 - 25 = 24
|AN| = √24
= √4×6
= 2√6 cm
|AN| = |NB| (A line drawn from the centre of a circle to a chord, divides the chord into two equal parts)
|AN| + |NB| = |AB|
2√6 + 2√6 = |AB|
|AB| = 4√6 cm
Question 26 Rapport
If log318 + log33 - log3x = 3, Find x.
Détails de la réponse
log183
+ log33
- logx3
= 3
log183
+ log33
- logx3
= 3log33
log183
+ log33
- logx3
= log333
log3(18×3X
) = log333
18×3X
= 33
18 x 3 = 27 x X
x = 18×327
= 2
Question 27 Rapport
Evaluate ∫12 (3 - 2x)dx
Détails de la réponse
∫10
(3 - 2x)dx
[3x - x2]o
[3(1) - (1)2] - [3(0) - (0)2]
(3 - 1) - (0 - 0) = 2 - 0
= 2
Question 28 Rapport
A man walks 100 m due West from a point X to Y, he then walks 100 m due North to a point Z. Find the bearing of X from Z.
Détails de la réponse
tanθ
= 100100
= 1
θ
= tan-1(1) = 45o
The bearing of x from z is ₦45oE or 135o
Question 29 Rapport
Make R the subject of the formula if T = KR2+M3
Détails de la réponse
Question 30 Rapport
Find the sum of the first 18 terms of the series 3, 6, 9,..., 36.
Détails de la réponse
3, 6, 9,..., 36.
a = 3, d = 3, i = 36, n = 18
Sn = n2
[2a + (n - 1)d
S18 = 182
[2 x 3 + (18 - 1)3]
= 9[6 + (17 x 3)]
= 9 [6 + 51] = 9(57)
= 513
Question 31 Rapport
The derivatives of (2x + 1)(3x + 1) is
Détails de la réponse
(2x + 1)(3x + 1) IS
2x + 1 d(3x+1)d
+ (3x + 1) d(2x+1)d
2x + 1 (3) + (3x + 1) (2)
6x + 3 + 6x + 2 = 12x + 5
Question 32 Rapport
In a right angled triangle, if tan θ
= 34
. What is cosθ
- sinθ
?
Détails de la réponse
tanθ
= 34
from Pythagoras tippet, the hypotenus is T
i.e. 3, 4, 5.
then sin θ
= 35
and cosθ
= 43
cosθ
- sinθ
45
- 35
= 15
Question 33 Rapport
A circle of perimeter 28cm is opened to form a square. What is the maximum possible area of the square?
Détails de la réponse
Perimeter of circle = Perimeter of square
28cm = 4L
L = 284
= 7cm
Area of square = L2
= 72
= 49cm2
Question 34 Rapport
A man invested ₦5,000 for 9 months at 4%. What is the simple interest?
Détails de la réponse
S.I. = P×R×T100
If T = 9 months, it is equivalent to 912
years
S.I. = 5000×4×9100×12
S.I. = ₦150
Question 35 Rapport
Find the value of x at the minimum point of the curve y = x3 + x2 - x + 1
Détails de la réponse
y = x3 + x2 - x + 1
dydx
= d(x3)dx
+ d(x2)dx
- d(x)dx
+ d(1)dx
dydx
= 3x2 + 2x - 1 = 0
dydx
= 3x2 + 2x - 1
At the maximum point dydx
= 0
3x2 + 2x - 1 = 0
(3x2 + 3x) - (x - 1) = 0
3x(x + 1) -1(x + 1) = 0
(3x - 1)(x + 1) = 0
therefore x = 13
or -1
For the maximum point
d2ydx2
< 0
d2ydx2
6x + 2
when x = 13
dx2dx2
= 6(13
) + 2
= 2 + 2 = 4
d2ydx2
> o which is the minimum point
when x = -1
d2ydx2
= 6(-1) + 2
= -6 + 2 = -4
-4 < 0
therefore, d2ydx2 < 0
the maximum point is -1
Question 36 Rapport
Find the probability that a number picked at random from the set(43, 44, 45, ..., 60) is a prime number.
Détails de la réponse
Question 37 Rapport
Rationalize 2−√53−√5
Détails de la réponse
2−√53−√5
x 3+√53+√5
(2−√5)(3+√5)(3−√5)(3+√5)
= 6+2√5−3√5−√259+3√5−3√5−√25
= 6−√5−59−5
= 1−√54
Question 38 Rapport
Solve for x and y respectively in the simultaneous equations -2x - 5y = 3, x + 3y = 0
Détails de la réponse
-2x -5y = 3
x + 3y = 0
x = -3y
-2 (-3y) - 5y = -3
6y - 5y = 3
y = 3
but, x = -3y
x = -3(3)
x = -9
therefore, x = -9, y = 3
Question 39 Rapport
If | 2 3 | = | 4 1 |. find the value of y. 7
Détails de la réponse
∣∣∣2353x∣∣∣
= ∣∣∣4132x∣∣∣
(2 x 3x) - (5 x 3) = (4 x 2x) - (3 x 1)
6x - 15 = 8x - 3
6x - 8x = 15 - 3
-2x = 12
x = 12−2
= -6
Question 40 Rapport
T varies inversely as the cube of R. When R = 3, T = 281 , find T when R = 2
Détails de la réponse
T α1R3
T = kR3
k = TR3
= 281
x 33
= 281
x 27
dividing 81 by 27
k = 22
therefore, T = 23
x 1R3
When R = 2
T = 23
x 123
= 23
x 18
= 112
Question 41 Rapport
Solve the inequality x2 + 2x > 15.
Détails de la réponse
x2 + 2x > 15
x2 + 2x - 15 > 0
(x2 + 5x) - (3x - 15) > 0
x(x + 5) - 3(x + 5) >0
(x - 3)(x + 5) > 0
therefore, x = 3 or -5
then x < -5 or x > 3
i.e. x< 3 or x < -5
Question 42 Rapport
The seconds term of a geometric series is 4 while the fourth term is 16. Find the sum of the first five terms
Détails de la réponse
T2 = 4, T4 = 16
Tx = arn-1
T2 = ar2-1 = 4 i.e. ar3 = 16, i.e. ar = 4
T4 = ar4-1
therefore, T4Tr
= ar3ar
= 164
r2 = 4 and r = 2
but ar = 4
a = 4r
= 42
a = 2
Sn = a(rn−1)r−1
S5 = 2(25−1)2−1
= 2(32−1)2−1
= 2(31)
= 62
Question 43 Rapport
Find the derivative of sinθcosθ
Détails de la réponse
sinθcosθ
cosθd(sinθ)dθ−sinθd(cosθ)dθcos2θ
cosθ.cosθ−sinθ(−sinθ)cos2θ
cos2θ+sin2θcos2θ
Recall that sin2 θ
+ cos2 θ
= 1
1cos2θ
= sec2 θ
Question 44 Rapport
Simplify (√2+1√3)(√2−1√3 )
Détails de la réponse
(√2+1√3)(√2−1√3
)
√4−√2√3+√2√3−1√9
= 2 - 13
= 16−13
= 53
Question 45 Rapport
Class Intervals0−23−56−89−11Frequency3253
Find the mode of the above distribution.
Détails de la réponse
Mode = L1 + (D1D1+D2
)C
D1 = frequency of modal class - frequency of the class before it
D1 = 5 - 2 = 3
D2 = frequency of modal class - frequency of the class that offers it
D2 = 5 - 3 = 2
L1 = lower class boundary of the modal class
L1 = 5 - 5
C is the class width = 8 - 5.5 = 3
Mode = L1 + (D1D1+D2
)C
= 5.5 + 32+3
C
= 5.5 + 35
x 3
= 5.5 + 95
= 5.5 + 1.8
= 7.3 ≈
= 7
Question 46 Rapport
Simplify 323×56×231115×34×227
Détails de la réponse
323×56×231115×34×227
113×56×231115×34×227
11054÷661620
50
Question 47 Rapport
Simplify (1681)14÷(916)−12
Détails de la réponse
(1681)14÷(916)−12
(1681)14÷(169)12
(2434)14÷(4232)12
24×1434×14÷42×1232×12
23÷43
23×34
24
12
Question 48 Rapport
Find the equation of a line perpendicular to line 2y = 5x + 4 which passes through (4, 2).
Détails de la réponse
2y = 5x + 4 (4, 2)
y = 5x2
+ 4 comparing with
y = mx + e
m = 52
Since they are perpendicular
m1m2 = -1
m2 = −1m1
= -1
52
= -1 x 25
The equator of the line is thus
y = mn + c (4, 2)
2 = -25
(4) + c
21
+ 85
= c
c = 185
10+55
= c
y = -25
x + 185
5y = -2x + 18
or 5y + 2x - 18 = 0
Question 49 Rapport
The inverse of matrix N = ∣∣∣2314∣∣∣
is
Détails de la réponse
N = [2 3]
N-1 = adjN|N|
adj N = ∣∣∣4−3−12∣∣∣
|N| = (2 x4) - (1 x 3)
= 8 - 3
=5
N-1 = 15
∣∣∣4−3−12∣∣∣
Souhaitez-vous continuer cette action ?