Chargement....
Appuyez et maintenez pour déplacer |
|||
Cliquez ici pour fermer |
Question 1 Rapport
Détails de la réponse
Simple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)
Prime: (2, 3, 5, 7)
multiples of 3: (3, 6, 9)
Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6)
Probability = 610
= 35
Question 2 Rapport
John gives one-third of his money to Janet who has ₦105.00. He then finds that his money is reduced to one-fourth of what Janet now has. Find how much money john has at first
Détails de la réponse
Let x be John's money, Janet already had ₦105, 13
of x was given to Janet
Janet now has 132
x + 105 = x+3153
John's money left = 23
x
= 14(x+315)3
= 23
24x = 3x + 945
∴ x = 45
Question 3 Rapport
In the figure, MNQP is a cyclic quadrilateral. MN and Pq are produced to meet at X and NQ and MP are produced to meet at Y. If MNQ = 86∘
and NQP = 122∘
find (x∘
, y∘
)
Détails de la réponse
y∘ = 180∘ - (86∘ + 58∘ )
180 - 144 = 36∘
x∘ = 180 - (94 + 58)
180 -152 = 28
(x∘ , y∘ ) = (28∘ , 36∘ )
Question 4 Rapport
If the hypotenuse of right angled isosceles triangle is 2, what is the length of each of the other sides?
Détails de la réponse
45o = x2
, Since 45o = 1√2
x = 2 x 1√2
= 2√22
= √2
Question 5 Rapport
If the quadratic function 3x2 - 7x + R is a perfect square, find R
Détails de la réponse
3x2 - 7x + R. Computing the square, we have
x2 - 73
= -R3
(x1?76
)2 = -R3
+ 4936
?R3
+ 4936
= 0
R = 4936
x 31
= 4912
Question 6 Rapport
If f(x - 2) = 4x2 + x + 7, find f(1)
Détails de la réponse
f(x - 2) = 4x2 + x + 7
x - 2 = 1, x = 3
f(x - 2) = f(1)
= 4(3)2 + 3 + 7
= 36 + 10
= 46
Question 7 Rapport
If cos θ = √32 and θ is less than 90o. Calculate cos90−θsin2θ
Détails de la réponse
cos90−θsin2θ
= tanθsin2θ
Sin2θ
=14
cos(90−θ)sin2θ
= 1√3
= 4√3
Question 8 Rapport
Factorize abx2 + 8y - 4bx - 2axy
Détails de la réponse
abx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)
= bx(ax - 4) 2y(ax - 4) 2y(ax - 4)
= (bx - 2y)(ax - 4)
Question 9 Rapport
A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red?
Détails de la réponse
P(R1) = 610
= 23
P(R1 n R11) = P(both red)
35
x 59
= 13
Question 10 Rapport
Find the area of a regular hexagon inscribed in a circle of radius 8cm
Détails de la réponse
Area of a regular hexagon = 8 x 8 x sin 60o
= 32 x √32
=
Area = 16√3
x 6 = 96 √3
cm2
Question 11 Rapport
In the equation below, Solve for x if all the numbers are in base 2: 11x = 1000x+101
Détails de la réponse
11x
= 1000x+101
= 11(x + 101)
1000x = 11x + 1111
1000x - 11x = 1111
101x = 1111
x = 1111101
x = 11
Question 12 Rapport
In △
XYZ, XKZ = 90O, XK = 15cm, XY = 35cm and YK = 8cm. Find the area of △
XYZ
Détails de la réponse
By Pythagoras, KZ2 = 252 - 52
KZ2 = (25 + 15)(25 - 15) = 400
KZ = √400 = 20
area of XYZ = 12×28×15
= 210 sq. cm
Question 13 Rapport
In the figure, PQ is the tangent from P to the circle QRS with SR as its diameter. If QRS = θ
∘
and RQP = ϕ
∘
, which of the following relationships between θ
∘
and ϕ
∘
is correct
Détails de la réponse
180 - ϕ ∘ = θ ∘ + ϕ ∘ (Sum of opposite interior angle equal to its exterior angle)
180 = 2ϕ + θ ∘
Question 14 Rapport
2212 % of the Nigerian Naira is equal to 17110 % of a foreign currency M. What is the conversion rate of the M to the Naira?
Détails de la réponse
N = 2212
%, M = 17110
%
M = 17110
%, N = 452
452
x 10171
= 225171
= 1 54171
= 1 1857
Question 15 Rapport
The bearing of a bird on a tree from a hunter on the ground is ₦72oE. What is the bearing of the hunter from the birds?
Détails de la réponse
Bearing of Hunter from Bird is
180 + 27 = 207o
Note that bearing is always taken from the north
207o = S 27o W
Question 16 Rapport
If a{x+1x−2−x−1x+2 } = 6x. Find a in its simplest form
Détails de la réponse
a{x+1x−2−x−1x+2
} = a{(x+1)(x+2)−(x−1)(x−2)(x−2)(x+2)
}
= 6
6xx2−4
= 6x
a = x2 - 4
Question 17 Rapport
Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12
Détails de la réponse
2x + y = 4......(i)
x^2 + xy = -12........(ii)
from eqn (i), y = 4 - 2x
= x2 + x(4 - 2x)
= -12
x2 + 4x - 2x2 = -12
4x - x2 = -12
x2 - 4x - 12 = 0
(x - 6)(x + 2) = 0
sub. for x = 6, in eqn (i) y = -8, 8
=(6,-8); (-2, 8)
Question 18 Rapport
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0
Détails de la réponse
Equal roots implies b2 - 4ac = 0
a = 1b = - (p - 2), c = 2p + 1
[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0
p2 - 4p + 4 - 4(2p + 1) = 0
p2 - 4p = 4 - 8p - 4 = 0
p2 - 12p = 0
p(p - 12) = 0
p = 0 or 12
Question 19 Rapport
Two points X and Y both on latitude 60oS have longitude 147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude (Take 2π R = 4 x 104km, where R is the radius of the earth)
Détails de la réponse
Length of an area = θ360
× 2π
r
Longitude difference = 147 + 153 = 300oN
distance between xy = θ360
× 2π
R cos60o
= 300360
× 4 × 104 × 12
= 1.667 × 104km (1667 km)
Question 20 Rapport
If three numbers P, Q, R are in ratio 6 : 4 : 5, find the value of 3p−q4q+r
Détails de la réponse
P : Q : r = 6 : 4 : 5
5 = 6 + 4 + 5
= 15
P = 615
, q = 415
, r = 515
= 13
To find 3p−q4q+r
3p - q = 3 x 615
- 415
1815
- 415
= 1415
∴ 4q + r = 4 x 415
+ 515
1615
= 1615
+ 515
= 2115
1415
x 1521
= 1421
= 23
Question 21 Rapport
PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2
Détails de la réponse
Area of trapezium = 14cm2
Area of trapezium = 12
(a + b)h
14 = 12
(4 + 3)h
14 = 72
h
h = 14×27
= 4
Area of SQR = 12
(3 x 4)
= 122
= 6.0
Question 22 Rapport
The factors of 9 - (x2 - 3x - 1)2 are
Détails de la réponse
9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]
= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1)
= (4 + 3x - x2)(x2 - 3x + 2)
= (4 - x)(1 + x)(x - 1)(x - 2)
= -(x - 4)(x + 1) (x - 1)(x - 2)
Question 23 Rapport
A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively?
Détails de la réponse
1√3(12)2
= 4√3
= √3√3
= 4√3√3
m = 64kg, V = 4πr33
= 4π(4)33
= 256π3
x 10-6m3
density(P) = MassVolume
= 64256π3×10−6
= 64×3×10−6256
= 34×10−6
m = PV = 34π×10−6
x 43
π
[32 - 22] x 10-6
34×10−6
x 43
x 5 x 10-6
= 5kg
Question 24 Rapport
In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z?
Détails de la réponse
Total students = 120
grade = 18
Zo = 18120
x 3601
= 54o
Question 25 Rapport
Find x if log9x = 1.5
Question 26 Rapport
Solve the simultaneous equations 2x - 3y + 10 = 10x - 6y = 5
Détails de la réponse
2x - 3y = -10; 10x - 6y = -5
2x - 3y = -10 x 2
10x - 6y = 5
4x - 6y = -20 .......(i)
10x - 6y = 5.......(ii)
eqn(ii) - eqn(1)
6x = 15
x = 156
= 52
x = 212
Sub. for x in equ.(ii) 10(52
) - 6y = 5
y = 312
Question 27 Rapport
The number of goals scored by a football team in 20 matches is shown below:
No. of goals012345No. of matches357310
What are the values of the mean and the mode respectively?
Détails de la réponse
xffx03015527143412414500
∑f
= 20
∑fx
= 35
Mean = ∑fx∑f
= 3520
= 74
= 1.75
Mode = 2
= 1.75, 2
Question 28 Rapport
Find the missing value in the table below
x |
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y=4?3x?x^3
|
80 | 18 | 8 | 4 | 0 | -10 | -32 |
Détails de la réponse
When x = -3, y = 4 - 3(3) - (-3)3
= 4 + 9 + 27
= 13 + 27
= 40
Question 29 Rapport
If 32y + 6(3y) = 27. Find y
Détails de la réponse
32y + 6(3y) = 27
This can be rewritten as (3y)2 + 6(3y) = 27
Let 3y = x
x2 + 6x - 27 = 0
(x + 9)(x - 3) = 0
when x - 3 = 0, x = 3
sub. for x in 3y = x
3y = 3
log33 = y
y = 1
Question 30 Rapport
Find correct to two decimals places 100 + 1100 + 31000 + 2710000
Détails de la réponse
100 + 1100
+ 31000
+ 2710000
1000,000+100+30+2710000
= 1,000.15710000
= 100.02
Question 31 Rapport
If two fair coins are tossed, what is the probability of getting at least one head?
Détails de la réponse
Prob. of getting at least one head
Prob. of getting one head + prob. of getting 2 heads
= 14
+ 24
= 34
Question 32 Rapport
Arrange the following numbers in ascending order of magnitude 67
, 1315
, 0.8650
Détails de la réponse
67
, 1315
, 0.8650
In ascending order, we have 0.8571, 0.8650, 0.8666
i.e. 67
< 0.8650 < 1315
Question 33 Rapport
Without using table, calculate the value of 1 + sec2 30o
Détails de la réponse
1 + sec2 30o = sec 30o
= 2√3
(2)23
= 43
1 + sec2 30o = sec 30o
= 1 + 4√3
= 213
Question 34 Rapport
At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect?
Détails de la réponse
y = x3 + x and y = x2 + 1
x−2−1012Y=x3+x−10−20210y=x2+152125
The curves intersect at x = 1
Question 35 Rapport
In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people?
Détails de la réponse
C = a + k
1N
= c
= aN+kN
CN = aN + K
30(100) = a(100) + k
3000 = 100a + k.......(i)
60(40) = a(40) + k
2400 = 40a + k.......(ii)
eqn (i) - eqn (ii)
600 = 60a
a = 10
subt. for a in eqn (i) 3000 = 100(10) + K
3000 - 1000 = k
k = 2000
CN = 10N + 2000. when N = 50,
50C = 10(50) + 2000
50C = 500 + 2000
C = 250050
= 50k
Question 36 Rapport
In the figure, GHIJKLMN is a cube of side a. Find the length of HN.
Détails de la réponse
HJ2 = a2 + a2 = 2a2
HJ = √2a2=a√2
HN2 = a2 + (a√2 )2 = a2 + 2a2 = 3a2
HN = √3a2
= a√3 cm
Question 37 Rapport
If ex = 1 + x2 + x21.2 + x31.2.3 + .....Find 1ex
Détails de la réponse
ex = 1 + x2 + x21.2 + x31.2.3 + x41.23.4
Question 38 Rapport
a sum of money was invested at 8% per annum simple interest. If after 4 years the money amounts to N330.00. Find the amount originally invested
Détails de la réponse
S.I = PTR100
T = 4yrs, R = 8%, a = N330.00
330 - P = PTR100
, A = P + I
i.e. A = P + PTR100
330 = P + P(4)(8)100
33000 = 32P + 100p
132P = 33000
P = N250.00
Question 39 Rapport
Which of these angles can be constructed using ruler and a pair of compasses only?
Détails de la réponse
Question 40 Rapport
List all integers satisfying the inequality -2 ≤
2 x -6 < 4
Détails de la réponse
-2 ≤
2x - 6 < 4 = 2x - 6 < 4
= 2x < 10
= x < 5
2x ≥
-2 + 6 ≥
= x ≥
2
∴ 2 ≤
x < 5 [2, 3, 4]
Question 41 Rapport
In △
XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = θ
. Find cosθ
o
Détails de la réponse
cosθ
= 132+92−1122(13)(9)
= 169+81−2126×9
cosθ
= 12926×9
= 4378
Question 42 Rapport
Write h in terms of a, b, c, d if a = b(1?ch)a?dh
Détails de la réponse
a = b(1?ch)a?dh
a = b?bch1?dh
= a - adh
= b - bch
a - b = bch + adn
a - b = adh
a - b = h(ad - bc)
h = a?bad?bc
Question 44 Rapport
In the figure, the area of the shaded segment is
Détails de la réponse
Area of sector = 120360×π×(3)2=3π
Area of triangle = 12×3×3×sin120o
= 92×√32=9√34
Area of shaded portion = 3π−9√34
= 3 π−3√34
Question 45 Rapport
(√2+4√2 ) (√3+√2 ) (√3+√2 ) is equal to
Détails de la réponse
(√2+4√2
) (√3+√2
) (√3+√2
)
(√3+√2
+ (√3+√2
) = 3 + (√6−√6
) - 2
= 1
Question 46 Rapport
The ratio of the length of two similar rectangular blocks is 2 : 3. If the volume of the larger block is 351cm3, then the volume of the other block is
Détails de la réponse
Let x represent total vol. 2 : 3 = 2 + 3 = 5
35
x = 351
x = 351×53
= 585
Volume of smaller block = 23
x 585
= 234.00
Question 47 Rapport
Solve the following equation 22r−1 - 53 = 1r+2
Détails de la réponse
22r−1
- 53
= 1r+2
22r−1
- 1r+2
= 53
2r+4−2r+12r−1(r+2)
= 53
5(2r+1)(r+2)
= 53
5(2r - 1)(r + 2) = 15
(10r - 5)(r + 2) = 15
10r2 + 20r - 5r - 10 = 15
10r2 + 15r = 25
10r2 + 15r - 25 = 0
2r2 + 3r - 5 = 0
(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)
(r - 1)(2r + 5) = 0
r = 1 or −52
Souhaitez-vous continuer cette action ?