Ana loda....
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
Danna nan don rufewa |
Tambaya 1 Rahoto
In a , < PQR = < PRQ = 45o. which of the following statements is/are correct? i. \(\bigtriangleup\)PQR is an equalateral triangle ii. \(\bigtriangleup\)PQR is an isosceles triangle iii. \(\bigtriangleup\)PQR is a right-angled triangle
Bayanin Amsa
Tambaya 3 Rahoto
For what range of values of x is 4x - 3(2x - 1) > 1?
Bayanin Amsa
To solve the inequality 4x - 3(2x - 1) > 1, we can simplify it as follows: 4x - 6x + 3 > 1 -2x + 3 > 1 -2x > -2 x < 1 Therefore, the range of values of x that satisfy the inequality is x < 1. So, the correct option is "x < 1".
Tambaya 4 Rahoto
I am x years old and my brother is 3 years older. How old was my brother last year?
Bayanin Amsa
If you are currently x years old, and your brother is 3 years older than you, then your brother's current age is x + 3. To find out how old your brother was last year, you need to subtract 1 from his current age: (x + 3) - 1 = x + 2 Therefore, your brother was x + 2 years old last year. So, the correct option is (b) (x + 2) years.
Tambaya 5 Rahoto
In the diagram, O is the centre of the circle and < PQR = 106o, find the value of y
Bayanin Amsa
Tambaya 6 Rahoto
Simplify \((0.3\times 10^{5})\div (0.4\times 10^{7})\)leaving your answer in standard form
Bayanin Amsa
Tambaya 7 Rahoto
Each of the interior angle of a regular polygon is 162o. How many sides has the polygon?
Bayanin Amsa
The sum of the interior angles of a polygon can be found by using the formula (n-2) x 180, where n is the number of sides of the polygon. For a regular polygon, all interior angles are equal. Let's call the measure of each interior angle x. Since the polygon is regular, we can use the fact that the sum of the measures of the interior angles of a polygon with n sides is (n-2) x 180, and that each interior angle of this polygon has measure x. Thus, we can set up the equation: n x x = (n-2) x 180 Simplifying this equation, we get: nx = 180n - 360 nx - 180n = -360 n(x - 180) = -360 n = -360 / (x - 180) We know that each interior angle of the polygon has a measure of 162 degrees, so x = 162. Substituting this value into the equation we just derived, we get: n = -360 / (162 - 180) n = -360 / (-18) n = 20 Therefore, the polygon has 20 sides. Answer: 20.
Tambaya 8 Rahoto
If the probability of an event occurring is x, what is the probability of the event not occurring?
Bayanin Amsa
The probability of an event occurring is the measure of the likelihood that the event will happen, given as a number between 0 and 1, inclusive. The probability of an event not occurring is the measure of the likelihood that the event will not happen. Since the sum of the probabilities of an event occurring and not occurring is 1, we can find the probability of an event not occurring by subtracting the probability of the event occurring from 1. Therefore, the probability of an event not occurring is equal to 1 minus the probability of the event occurring. Mathematically, if the probability of an event occurring is x, then the probability of the event not occurring is 1 - x. So, option A, 1 - x, is the correct answer.
Tambaya 9 Rahoto
Simplify(0.3 x 105) \(\div\) (0.4 \(\times\) 107), leaving you answer in the standard form.
Bayanin Amsa
To simplify this expression, we need to perform division and then express the answer in standard form. (0.3 x 105) \(\div\) (0.4 x 107) = (0.3/0.4) x 105−7 = 0.75 x 10-2 = 7.5 x 10-3 Therefore, the answer is 7.5 x 10-3.
Tambaya 10 Rahoto
If x =3, y = 2 and z = 4 what is the value of \(3x^{2}-2y+z\)
Bayanin Amsa
Substituting x = 3, y = 2 and z = 4 into the expression \(3x^{2}-2y+z\), we get: $$3(3)^2 - 2(2) + 4 = 27 - 4 + 4 = 27$$ Therefore, the value of \(3x^{2}-2y+z\) when x = 3, y = 2 and z = 4 is 27. The correct option is (b) 27.
Tambaya 11 Rahoto
Which of the following is true for the set \(P = \{-3.2\leq x< 5\}\) where x is an integer
Bayanin Amsa
Tambaya 12 Rahoto
Solve the simultaneous equations x + y = 2 and 3x - 2y = 1
Bayanin Amsa
To solve the simultaneous equations x + y = 2 and 3x - 2y = 1, we can use the method of substitution or elimination. Method of Substitution: We can solve for one variable in terms of the other from the first equation and substitute it into the second equation, then solve for the other variable. Let's solve for y in terms of x from the first equation: x + y = 2 y = 2 - x Now substitute y = 2 - x into the second equation: 3x - 2y = 1 3x - 2(2 - x) = 1 3x - 4 + 2x = 1 5x = 5 x = 1 Now substitute x = 1 into either equation to find y: x + y = 2 1 + y = 2 y = 1 Therefore, the solution is x = 1 and y = 1. So, the correct answer is: x = 1 and y = 1.
Tambaya 13 Rahoto
For what value of x is the expression \(\frac{2x-1}{x+3}\)not defined?
Bayanin Amsa
The expression \(\frac{2x-1}{x+3}\) is not defined when the denominator, \(x+3\), is equal to zero. Therefore, we can solve the equation \(x+3=0\) to find the value of x that makes the expression undefined. \(x+3=0\) \(x=-3\) So, the value of x that makes the expression undefined is -3. Therefore, the correct answer is (-3).
Tambaya 14 Rahoto
In the diagram, |XR| = 4cm
|RZ| = 12cm, |SR| = n, |XZ| = m and SR||YZ. Find m in terms of n
Bayanin Amsa
Tambaya 15 Rahoto
At what rate per cent per annum will N520.00 yield a simple interest of N39.00 in three years?
Bayanin Amsa
We can use the formula for simple interest: Simple Interest = (P * r * t) / 100 where P is the principal, r is the rate of interest per annum, and t is the time period in years. We are given that P = N520.00 and the simple interest, SI = N39.00. We are also given that the time period is 3 years. Substituting these values into the formula, we get: N39.00 = (N520.00 * r * 3) / 100 Simplifying this equation, we get: r = (N39.00 * 100) / (N520.00 * 3) = 2.5% Therefore, the rate of interest per annum is 2.5%. So, the correct option is: - 2\(\frac{1}{2}\)%
Tambaya 16 Rahoto
Simplify 3\(\sqrt{45} - 12\sqrt{5} + 16\sqrt{20}\), leaving your answer in surd form.
Bayanin Amsa
First, we need to simplify each of the surds in the expression. \[\begin{aligned} 3\sqrt{45} &= 3\sqrt{9\times 5} = 3\times 3\sqrt{5} = 9\sqrt{5} \\ 16\sqrt{20} &= 16\sqrt{4\times 5} = 16\times 2\sqrt{5} = 32\sqrt{5} \end{aligned}\] Now we can substitute these simplified surds back into the original expression and simplify it further: \[\begin{aligned} 3\sqrt{45} - 12\sqrt{5} + 16\sqrt{20} &= 9\sqrt{5} - 12\sqrt{5} + 32\sqrt{5} \\ &= (9-12+32)\sqrt{5} \\ &= 29\sqrt{5} \end{aligned}\] Therefore, the simplified expression is 29\(\sqrt{5}\). The correct option is (a).
Tambaya 17 Rahoto
Evaluate \((111_{two})^2\) and leave your answer in base 2
Bayanin Amsa
To solve this question, we need to convert the number 111 from binary to decimal, then square the result and convert the answer back to binary. Starting with the binary number 111, we can convert it to decimal using the place value system. The rightmost digit represents 1, the second digit from the right represents 2, and the leftmost digit represents 4. Adding these values together, we get: 1 + 2 + 4 = 7 So 111 in binary is equal to 7 in decimal. To square 7, we simply multiply it by itself: 7 x 7 = 49 So the decimal equivalent of (111two)2 is 49. To convert this back to binary, we use the same place value system but in reverse. Starting with the largest power of 2 that is less than or equal to 49, we subtract that value and place a 1 in the corresponding digit. We then repeat this process with the remainder until we reach 0. 49 is greater than or equal to 32, so we subtract 32 and place a 1 in the 6th digit from the right. The remainder is 17. 17 is greater than or equal to 16, so we subtract 16 and place a 1 in the 5th digit from the right. The remainder is 1. 1 is less than 2, so we place a 1 in the 1st digit from the right. The remainder is 0, so we have our final answer: 49 in binary is equal to 110001two Therefore, the correct answer is (b) 110001two.
Tambaya 18 Rahoto
A sector of a circle of radius 14cm containing an angle 60o is folded to form a cone. Calculate the radius of the base of the cone
Bayanin Amsa
Tambaya 19 Rahoto
Find the volume of a solid cylinder with base radius 10cm and height 14cm.
Bayanin Amsa
The volume of a cylinder is given by the formula V = πr2h, where r is the radius of the base and h is the height of the cylinder. In this case, the base radius is 10cm and the height is 14cm. Substituting these values into the formula, we have: V = π(10cm)2(14cm) = π(100cm2)(14cm) = 1400πcm3 Using the value of π ≈ 3.14, we can approximate the answer to: V ≈ 1400(3.14) ≈ 4400cm3 Therefore, the volume of the cylinder is approximately 4400cm3. The correct option is (D) 4400cm3.
Tambaya 20 Rahoto
The table above gives the distribution of the marks of a number of students in a test.
\(\begin{array}{c|c} Mark &1 & 2 & 3 & 4 & 5 & 6 \\ \hline Frequency & 5 & 3 & 6 & 4 & 2 & 5\end{array}\), find the mode of the distribution.
Bayanin Amsa
Tambaya 21 Rahoto
Find the product of 0.0409 and 0.0021 leaving your answer in the standard form
Bayanin Amsa
Tambaya 22 Rahoto
Which of the following statement is true for the ste P = {-3.2 \(\leq\) x < 5} where x is an integer?
Bayanin Amsa
The given set P = {-3.2 ≤ x < 5} contains all the integers that are greater than or equal to -3.2 but less than 5. However, since x has to be an integer, the least possible value of x is -3 (since -3 is the greatest integer less than or equal to -3.2) and the greatest possible value of x is 4 (since 4 is the greatest integer less than 5). Therefore, the statement "least value of x is -3" is true for the set P, and the statement "greatest value of x is 5" is false.
Tambaya 24 Rahoto
Q is 32 km away from P on a bearing 042o and R is 25km from P on a bearing of 132o. Calculate the bearing of R from Q.
Bayanin Amsa
Tambaya 25 Rahoto
In the diagram, O is the centre of the circle and PQ is a diameter. Triangle RSO is an equilateral triangle of side 4cm. Find the area of the shaded region
Bayanin Amsa
Tambaya 28 Rahoto
The area of a square field is 110.25m2. Find the cost of fencing it round at N75.00 per metre
Bayanin Amsa
The area of the square field is given as 110.25m2. We know that the area of a square is given by the formula A = s2, where A is the area and s is the side length. Therefore, we can find the side length of the square as follows: s2 = A s2 = 110.25 s = √110.25 = 10.5m The perimeter of the square is given by the formula P = 4s, where P is the perimeter and s is the side length. Therefore, we can find the perimeter of the square as follows: P = 4s = 4(10.5m) = 42m To find the cost of fencing it round at N75.00 per metre, we need to multiply the perimeter by N75.00: Cost = P × N75.00 = 42m × N75.00 = N3,150.00 Therefore, the cost of fencing the square field at N75.00 per metre is N3,150.00. So the correct option is (B) N3,150.00.
Tambaya 29 Rahoto
Convert 425 to base three numeral
Bayanin Amsa
To convert a number from base 5 to base 3, we need to first convert it to base 10, and then convert it to base 3. 425 can be written as: $42_{5} = 4\cdot5^{1} + 2\cdot5^{0} = 20 + 2 = 22_{10}$ Now we convert 2210 to base 3. We can do this by repeatedly dividing 22 by 3 and taking the remainders, until the quotient is zero. The remainders, read from bottom to top, give us the base 3 numeral. \begin{array}{c|c} \text{Dividend} & \text{Remainder}\\ \hline 22 & 1 \\ 7 & 2 \\ 2 & 2 \\ 0 & \\ \end{array} So, 2210 is equal to 2123. Therefore, the correct option is (3) 2113.
Tambaya 30 Rahoto
Simplify \(\frac{3x^3}{(3x)^3}\)
Bayanin Amsa
We can simplify this expression by using the rule that states \(\frac{a^m}{a^n}=a^{m-n}\) for any non-zero real number a and integers m and n. Applying this rule, we get: \[\frac{3x^3}{(3x)^3} = \frac{3x^3}{27x^3} = \frac{1}{9}\] Therefore, the answer is \(\frac{1}{9}\).
Tambaya 31 Rahoto
Simplify \(3\sqrt{45}-12\sqrt{5}+16\sqrt{20}\)leaving your answer in surd form
Bayanin Amsa
First, we need to simplify each term under the square root sign. We can write: \begin{align*} 3\sqrt{45} &= 3\sqrt{9\times 5} = 3\times 3\sqrt{5} = 9\sqrt{5}\\ 12\sqrt{5} &= 2\times 2\times 3\sqrt{5} = 4\sqrt{5}\times 3\\ 16\sqrt{20} &= 16\sqrt{4\times 5} = 16\times 2\sqrt{5} = 32\sqrt{5} \end{align*} Now we can substitute these simplified expressions back into the original expression and simplify: \begin{align*} 3\sqrt{45}-12\sqrt{5}+16\sqrt{20} &= 9\sqrt{5}-4\sqrt{5}\times 3+32\sqrt{5}\\ &= (9-12+32)\sqrt{5}\\ &= 29\sqrt{5} \end{align*} Therefore, the answer is \(29\sqrt{5}\).
Tambaya 32 Rahoto
The venn diagram shows the choice of food of a number of visitors to a canteen. How many people took at least two kinds of food? If there were 35 visitors in all
Tambaya 34 Rahoto
IN the diagram, |LN| = 4cm, LNM = 90o and tan y = 2/3. What is the area of the ?LMN?
Tambaya 35 Rahoto
The table shows the ages(in years) of twenty children chosen at random from a community. What is the mean age? \(\begin{array}{c|c} Age(years) & 1 & 2 & 3 & 4 & 5 \\ \hline {\text {Number of children}} & 2 & 3 & 5 & 6 & 4 \end{array}\)
Bayanin Amsa
To find the mean age of the twenty children, we need to calculate the sum of the ages and divide by the total number of children. Sum of the ages = (1 x 2) + (2 x 3) + (3 x 5) + (4 x 6) + (5 x 4) = 2 + 6 + 15 + 24 + 20 = 67 Total number of children = 2 + 3 + 5 + 6 + 4 = 20 Mean age = sum of the ages/total number of children = 67/20 = 3.35 years Therefore, the mean age of the twenty children is 3.35 years. The correct option is (b) 3.35 years.
Tambaya 37 Rahoto
In the diagram |LN| = 4cm, LNM = 90o and tan y = \(\frac{2}{3}\). What is the area of the \(\bigtriangleup\)LMN?
Tambaya 38 Rahoto
The volume of a cylinder is 1200cm3 and the area of its base is 150cm2. Find the height of the cylinder.
Bayanin Amsa
We can use the formula for the volume of a cylinder to solve this problem, which is: V = πr²h where V is the volume of the cylinder, r is the radius of the base, and h is the height of the cylinder. We are given that the volume of the cylinder is 1200cm³, so we can substitute this value into the formula: 1200 = πr²h We are also given that the area of the base is 150cm², and the formula for the area of a circle is: A = πr² where A is the area of the circle and r is the radius. Since the base of the cylinder is a circle, we can use this formula to find the radius: 150 = πr² r² = 150/π r ≈ 6.12 cm (rounded to two decimal places) Now we can substitute this value for r in the first formula and solve for h: 1200 = π(6.12)²h h ≈ 8 cm (rounded to two decimal places) Therefore, the height of the cylinder is approximately 8cm. So the correct option is (b) 8.00cm.
Tambaya 40 Rahoto
N140,000 is shared between ABU, Kayode and Uche. Abu has twice as much as Kayode, and Kayode has twice as much as Uche. What is Kayode's share?
Bayanin Amsa
Let's start by using variables to represent the amount of money each person gets. Let Uche's share be x. Then, we know that Kayode's share is twice that amount, so his share is 2x. And we also know that Abu's share is twice Kayode's share, so his share is 2(2x) = 4x. The sum of their shares is given as N140,000, so we can set up an equation: x + 2x + 4x = 140,000 Simplifying the left side of the equation, we get: 7x = 140,000 Dividing both sides by 7, we get: x = 20,000 So Uche's share is N20,000. We can then find Kayode's share, which is twice that amount: 2x = 2(20,000) = 40,000 Therefore, Kayode's share is N40,000. So the answer is, N40,000.
Tambaya 41 Rahoto
I am x years old and my brother is 3 years older how old was my brother last year
Bayanin Amsa
Tambaya 42 Rahoto
If p \(\alpha \frac{I}{Q}\) which of the following is true?
Bayanin Amsa
Given that p \(\alpha \frac{I}{Q}\), where \(\alpha\) means 'is proportional to'. To determine the relationship between q and p, we need to manipulate the equation so that q is isolated on one side. We can write p = k\(\frac{I}{Q}\), where k is the constant of proportionality. Multiplying both sides by Q, we get pQ = kI. Dividing both sides by p, we get Q = \(\frac{k}{p}\)I. Since k is a constant of proportionality, we can write it as k = cp for some other constant c. Therefore, Q = \(\frac{c}{p}\)I. This means that q is inversely proportional to p. So, the correct option is q \(\alpha \frac{1}{p}\).
Tambaya 43 Rahoto
PQR is an equilateral triangle with sides 2\(\sqrt{3cm}\). calculate its height
Bayanin Amsa
Tambaya 44 Rahoto
If \(8^{x+1}=\frac{1}{4}\), find x
Bayanin Amsa
We can solve the given equation by taking logarithms to the base 2 on both sides. This gives: \begin{align*} 8^{x+1} &= \frac{1}{4}\\ \Rightarrow \quad 2^{3(x+1)} &= 2^{-2}\\ \Rightarrow \quad 3(x+1) &= -2\\ \Rightarrow \quad 3x+3 &= -2\\ \Rightarrow \quad 3x &= -5\\ \Rightarrow \quad x &= -\frac{5}{3} \end{align*} Therefore, the value of $x$ is $-\frac{5}{3}$. So, the correct option is \(-\frac{5}{3}\).
Tambaya 45 Rahoto
Evaluate(111two)2 and leave your answer in base 2.
Bayanin Amsa
To evaluate (111two)2, we need to convert the binary number 111two to its decimal equivalent, then square the result, and finally convert the answer back to binary. 111two = 1 × 22 + 1 × 21 + 1 × 20 = 7ten (111two)2 = (7ten)2 = 49ten To convert 49ten back to binary, we repeatedly divide by 2 and write down the remainders in reverse order: 49 ÷ 2 = 24 remainder 1 24 ÷ 2 = 12 remainder 0 12 ÷ 2 = 6 remainder 0 6 ÷ 2 = 3 remainder 0 3 ÷ 2 = 1 remainder 1 1 ÷ 2 = 0 remainder 1 Reading the remainders in reverse order gives us: 49ten = 110001two Therefore, the answer is (B) 110001two.
Tambaya 46 Rahoto
Two circles have radii 16cm and 23cm. What is the difference between their circumference? take \(\pi = \frac{22}{7}\)
Bayanin Amsa
The circumference of a circle is given by the formula 2πr, where r is the radius of the circle and π is a constant value approximately equal to 22/7 or 3.14. Using the given formula, the circumference of the circle with radius 16cm is 2 x (22/7) x 16cm = 100.57cm (to 2 decimal places). Similarly, the circumference of the circle with radius 23cm is 2 x (22/7) x 23cm = 144.57cm (to 2 decimal places). Therefore, the difference between the circumferences of the two circles is 144.57cm - 100.57cm = 44.00cm (to 2 decimal places). Hence, the correct option is (C) 44.00cm.
Tambaya 47 Rahoto
A chord of length 6cm is drawn in a circle of radius 5cm. Find the distance of the chord from the center of the circle
Bayanin Amsa
Tambaya 48 Rahoto
N140,000 is shared between Abu, Kayode and Uche. Abu has twice as much as Kayode and Kayode has twice as much as Uche. What is Kayode'sshare?
Bayanin Amsa
Let Uche's share be x. Since Kayode has twice as much as Uche, Kayode's share will be 2x. Also, since Abu has twice as much as Kayode, Abu's share will be 2(2x) = 4x. The sum of their shares is N140,000, so we have: x + 2x + 4x = N140,000 7x = N140,000 x = N20,000 Therefore, Kayode's share is 2x = 2(N20,000) = N40,000. Hence, the answer is N40,000.
Tambaya 49 Rahoto
The table shows the ages(in years) of twenty children chosen at random from a community. What is the median of the distribution? \(\begin{array}{c|c} Age(years) & 1 & 2 & 3 & 4 & 5 \\ \hline {\text {Number of children}} & 2 & 3 & 5 & 6 & 4 \end{array}\)
Tambaya 50 Rahoto
A messenger was paid N2.50 an hour during the normal working hours and 4.00 n hour during overtime. If he received N31.00 for 10 hours work, how many hours are for overtime?
Bayanin Amsa
Let's call the number of normal working hours the messenger did as "x" and the number of overtime hours as "y". We can create two equations based on the given information: Equation 1: The messenger worked a total of 10 hours x + y = 10 Equation 2: The total amount paid is N31.00 2.5x + 4y = 31 We can use the first equation to solve for x in terms of y: x = 10 - y Now we can substitute this expression for x into the second equation: 2.5(10 - y) + 4y = 31 Simplifying and solving for y, we get: 25 - 2.5y + 4y = 31 1.5y = 6 y = 4 Therefore, the messenger worked 4 hours of overtime. Answer: (c) 4.
Tambaya 53 Rahoto
make w the subject of the relation \(\frac{a + bc}{wd + f}\) = g
Bayanin Amsa
To make w the subject of the relation \(\frac{a + bc}{wd + f} = g\), we can follow these steps: 1. Multiply both sides by \((wd + f)\) 2. Divide both sides by g 3. Divide both sides by (a + bc) This gives: \begin{align*} \frac{a + bc}{wd + f} &= g \\ (a + bc) &= g(wd + f) \\ a + bc &= gwd + gf \\ gwd &= a + bc - gf \\ w &= \frac{a + bc - gf}{gd} \end{align*} Therefore, the solution is: \begin{equation*} w = \frac{a + bc - gf}{gd} \end{equation*} Hence, the option that matches this answer is: - \(\frac{a + bc - fg}{dg}\)
Tambaya 54 Rahoto
Simplify\(\frac{3x^{3}}{(3x)^{3}}\)
Bayanin Amsa
To simplify the expression, we need to first expand the denominator of the fraction, which is \((3x)^3\). This can be written as \(3^3 x^3\) or \(27x^3\). Substituting this in the original fraction gives: $$\frac{3x^3}{(3x)^3} = \frac{3x^3}{27x^3} = \frac{1}{9}$$ Therefore, the simplified form of the expression is \(\frac{1}{9}\). Hence, the correct option is \(\frac{1}{9}\).
Tambaya 55 Rahoto
Divide the sum of 8, 6, 7, 2, 0, 4, 7, 2, 3, by their mean
Bayanin Amsa
To divide the sum of the given numbers by their mean, we need to first find their sum and mean. Sum = 8 + 6 + 7 + 2 + 0 + 4 + 7 + 2 + 3 = 39 Mean = (8 + 6 + 7 + 2 + 0 + 4 + 7 + 2 + 3) / 9 = 4.33 (rounded to two decimal places) Now, to divide the sum by the mean, we simply divide the sum by the mean: 39 / 4.33 = 9 (rounded to the nearest whole number) Therefore, the answer is 9.
Tambaya 56 Rahoto
Find the smallest value of k such that 2\(^2\) x 3\(^3\) x 5 x k is a perfect square.
Bayanin Amsa
Tambaya 57 Rahoto
If 8x-1 = \(\frac{1}{4}\), find x
Bayanin Amsa
We know that 8x-1 = \(\frac{1}{4}\). We can write 8x-1 as (23)x-1 = 23x-3. Similarly, we can write 1/4 as 2-2. Therefore, we can write the given equation as 23x-3 = 2-2. Since the bases are equal, we can equate the exponents to get: 3x - 3 = -2 Adding 3 to both sides, we get: 3x = 1 Dividing both sides by 3, we get: x = \(\frac{1}{3}\) Therefore, the value of x is \(\frac{1}{3}\).
Tambaya 58 Rahoto
A sector of a circle of radius 14cm containing an angle 60o is folded to form a cone. Calculate the radius of the base of the cone.
Bayanin Amsa
The sector of a circle can be folded to form a cone if and only if the arc length of the sector is equal to the circumference of the base of the cone. Given that the radius of the sector is 14 cm and the angle is 60o, the arc length of the sector is \(\frac{60}{360}\times2\pi(14)=\frac{14\pi}{3}\) cm. Let's denote the radius of the base of the cone by r. Then, the circumference of the base of the cone is \(2\pi r\) cm. Since the arc length of the sector is equal to the circumference of the base of the cone, we have: \[\frac{14\pi}{3}=2\pi r\] Dividing both sides by 2π gives: \[r=\frac{14}{3}\div2=\frac{7}{3}=2\frac{1}{3}\,\text{cm}\] Therefore, the radius of the base of the cone is \(2\frac{1}{3}\,\text{cm}\). Answer:.
Tambaya 59 Rahoto
For what value of x is the expression \(\frac{2x - 1}{x + 3}\) not defined?
Bayanin Amsa
The expression \(\frac{2x-1}{x+3}\) is undefined if the denominator is equal to zero, since division by zero is not allowed in mathematics. Therefore, we need to solve the equation \(x+3=0\) to find the value of x for which the expression is undefined. Solving for x, we have: \begin{align*} x+3 &= 0 \\ x &= -3 \end{align*} Therefore, the expression is not defined for x = -3. Thus, the correct answer is (-3).
Tambaya 60 Rahoto
Solve the simultaneous equation: x+y=2 and 3x-2y=1
Bayanin Amsa
To solve this system of simultaneous equations, we need to find the values of x and y that satisfy both equations at the same time. One way to do this is to use the method of substitution. From the first equation, we have x + y = 2, which we can rearrange as x = 2 - y. We can then substitute this expression for x into the second equation, giving 3(2-y) - 2y = 1. Simplifying the left-hand side, we get 6 - 5y = 1, and solving for y, we find y = 1. We can then substitute this value for y into either equation to find x. Using the first equation, we get x + 1 = 2, so x = 1. Therefore, the solution to the simultaneous equations is x = 1 and y = 1.
Tambaya 61 Rahoto
Find the value of x in the diagram
Tambaya 62 Rahoto
If x = 3, Y = 2 and z = 4, what is the value of 3x2 - 2y + z?
Bayanin Amsa
Substituting x = 3, y = 2, and z = 4 into the expression 3x2 - 2y + z gives: 3x2 - 2y + z = 3(3)2 - 2(2) + 4 = 27 - 4 + 4 = 27 Therefore, the value of 3x2 - 2y + z is 27.
Tambaya 63 Rahoto
The area of a square field is 110.25m2. Find the cost of fencing it round at N75.00 per meter square
Bayanin Amsa
Tambaya 64 Rahoto
The bearing of a point P from another point Q is 310o. If |PQ| = 200m, how far west of Q is P?
Bayanin Amsa
Tambaya 65 Rahoto
Find the LCM of \(2^{3}\times 3\times 5^{2}, 2\times 3^{2}\times 5 \hspace{1mm}and \hspace{1mm}2^{2}\times 3^{2}\times 5\)
Tambaya 66 Rahoto
Expand the expression(3a - xy)(3a + xy)
Bayanin Amsa
To expand the expression (3a - xy)(3a + xy), we can use the formula for multiplying two binomials: (a + b)(a - b) = a2 - b2 If we let a = 3a and b = xy, then we have: (3a - xy)(3a + xy) = (3a)2 - (xy)2 Expanding the terms on the right side, we get: (3a)2 - (xy)2 = 9a2 - x2y2 Therefore, the answer is 9a2 - x2y2.
Tambaya 67 Rahoto
A chord of length 6cm is drawn in a circle of radius 5cm. Find the distance of the chord from the centre of the circle.
Bayanin Amsa
When a chord is drawn in a circle, it divides the circle into two equal parts. The line connecting the midpoint of the chord and the center of the circle is perpendicular to the chord. Therefore, to find the distance of the chord from the center of the circle, we need to draw a perpendicular bisector to the chord and measure the distance from the center of the circle to the perpendicular bisector. Let O be the center of the circle, AB be the chord of length 6cm and M be the midpoint of AB. Then OM is the perpendicular bisector of AB, and AM = MB = 3cm. Using the Pythagorean theorem in triangle OAM, we have: $$OA^2 = OM^2 + AM^2 = 5^2 - 3^2 = 16$$ Taking the square root of both sides, we have OA = 4cm. Therefore, the distance of the chord from the center of the circle is 4cm. So the correct option is (d) 4.0cm.
Tambaya 68 Rahoto
(a) A cylinder with radius 3.5 cm has its two ends closed, if the total surface area is \(209 cm^{2}\), calculate the height of the cylinder. [Take \(\pi = \frac{22}{7}\)].
(b) In the diagram, O is the centre of the circle and ABC is a tangent at B. If \(\stackrel\frown{BDF} = 66°\) and \(\stackrel\frown{DBC} = 57°\), calculate, (i) \(\stackrel\frown{EBF}\) and (ii) \(\stackrel\frown{BGF}\).
None
Bayanin Amsa
None
Tambaya 69 Rahoto
(a) Using a ruler and a pair of compasses only, construc :
(i) a triangle PQR such that /PQ/ = 10 cm, /QR/ = 7 cm and < PQR = 90° ; (ii) the locus \(l_{1}\) of points equidistant from Q and R ; (iii) the locus \(l_{2}\) of points equidistant from P and Q.
(b) Locate the point O equidistant from P, Q and R.
(c) With O as centre, draw the circumcircle of the triangle PQR.
(d) Measure the radius of the circumcircle.
Bayanin Amsa
None
Tambaya 71 Rahoto
(a) Simplify : \(\frac{x^{2} - y^{2}}{3x + 3y}\)
(b)
In the diagram, PQRS is a rectangle. /PK/ = 15 cm, /SK/ = /KR/ and <PKS = 30°. Calculate, correct to three significant figures : (i) /PS/ ; (ii) /SK/ and (iii) the area of the shaded portion.
Bayanin Amsa
None
Tambaya 72 Rahoto
(a) The 3rd and 8th terms of an arithmetic progression (A.P) are -9 and 26 respectively. Find the : (i) common difference ; (ii) first term.
(b)
In the diagram \(\overline{PQ} || \overline{YZ}\), |XP| = 2cm, |PY| = 3 cm, |PQ| = 6 cm and the area of \(\Delta\) XPQ = 24\(cm^{2}\).Calculate the area of the trapezium PQZY.
Tambaya 73 Rahoto
(a) With the aid of four- figure logarithm tables, evaluate \((0.004592)^{\frac{1}{3}}\).
(b) If \(\log_{10} y + 3\log_{10} x = 2\), express y in terms of x.
(c) Solve the equations : \(3x - 2y = 21\)
\(4x + 5y = 5\).
Bayanin Amsa
None
Tambaya 74 Rahoto
(a)
In the diagram, AOB is a straight line. < AOC = 3(x + y)°, < COB = 45°, < AOD = (5x + y)° and < DOB = y°. Find the values of x and y.
(b) From two points on opposite sides of a pole 33m high, the angles of elevation of the top of the pole are 53° and 67°. If the two points and the base are on te same horizontal level, calculate, correct to three significant figures, the distance between the two points.
None
Bayanin Amsa
None
Tambaya 75 Rahoto
(a) Evaluate, without using mathematical tables or calculator, \((3.69 \times 10^{5}) \div (1.64 \times 10^{-3})\), leaving your answer in standard form.
(b) A man invested N20,000 in bank A and N25,000 in bank B at the beginning of the year. Bank A pays simple interest at a rate of y% per annum and B pays 1.5y% per annum. If his total interest at the end of the year from the two banks was N4,600, find the value of y.
Bayanin Amsa
None
Tambaya 76 Rahoto
(a) Simplify : \(\frac{x^{2} - 8x + 16}{x^{2} - 7x + 12}\).
(b) If \(\frac{1}{2}, \frac{1}{x}, \frac{1}{3}\) are successive terms of an arithmetic progression (A.P), show that \(\frac{2 - x}{x - 3} = \frac{2}{3}\).
Tambaya 77 Rahoto
Out of the 24 apples in a box, 6 are bad. If three apples are taken from the box at random, with replacement, find the probability that :
(a) the first two are good and the third is bad ;
(b) all three are bad ;
(c) all the three are good.
Tambaya 78 Rahoto
(a) Simplify : \(\frac{3\frac{1}{12} + \frac{7}{8}}{2\frac{1}{4} - \frac{1}{6}}\)
(b) If \(p = \frac{m}{2} - \frac{n^{2}}{5m}\) ;
(i) make n the subject of the relation ; (ii) find, correct to three significant figures, the value of n when p = 14 and m = -8.
None
Bayanin Amsa
None
Tambaya 79 Rahoto
In a college, the number of absentees recorded over a period of 30 days was as shown in the frequency distribution table
Number of absentees | 0-4 | 5-9 | 10-14 | 15-19 | 20-24 |
Number of Days | 1 | 5 | 10 | 9 | 5 |
Calculate the : (a) Mean
(b) Standard deviation , correct to two decimal places.
Tambaya 80 Rahoto
Y is 60 km away from X on a bearing of 135°. Z is 80 km away from X on a bearing of 225°. Find the :
(a) distance of Z from Y ;
(b) bearing of Z from Y.
Bayanin Amsa
None
Za ka so ka ci gaba da wannan aikin?