Ana ebu...
|
Tẹ & Di mu lati Gbe Yika |
|||
|
Pịa Ebe a ka Imechi |
|||
Ajụjụ 1 Ripọtì
When marble is heated to 1473K, another whiter solid is obtained which reacts vigoriously with water to give an alkaline solution. The solution contains
Akọwa Nkọwa
The white solid obtained when marble (calcium carbonate, CaCO3) is heated to 1473K is calcium oxide (CaO), also known as quicklime. When quicklime reacts vigorously with water, it forms calcium hydroxide (Ca(OH)2), which is an alkaline solution. Therefore, the solution obtained from the reaction of quicklime with water contains calcium hydroxide (Ca(OH)2).
Ajụjụ 2 Ripọtì
Which of the following does NOT contain aluminum as a component?
Ajụjụ 3 Ripọtì
Which of the following will precipitate in dil. HCl
Akọwa Nkọwa
Among the given options, only CuS will precipitate in dilute HCl. CuS is insoluble in dilute HCl, and hence it will precipitate when added to dilute HCl. However, the other options will dissolve in dilute HCl, and hence they will not precipitate. ZnS will dissolve in dilute HCl to form ZnCl2 and H2S. Na2S will react with dilute HCl to produce H2S and NaCl. FeS will dissolve in dilute HCl to form FeCl2 and H2S. Therefore, the correct answer is (4) CuS.
Ajụjụ 4 Ripọtì
A certain volume of gas at 298k is heated such that its volume and pressure are now four times the original values. What is the new temperature?
Akọwa Nkọwa
We can use the ideal gas law to solve this problem, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in kelvin. If the volume and pressure are both increased by a factor of 4, then the new volume V' and new pressure P' are given by: V' = 4V P' = 4P Substituting these values into the ideal gas law, we get: (4P)(4V) = nR(T') Simplifying this equation, we get: 16PV = nRT' Dividing both sides by PV, we get: 16 = nRT' / PV Since n, R, and P are constant, we can simplify this to: 16 = T' / T Solving for T', we get: T' = 16T Therefore, the new temperature is 16 times the original temperature. Substituting T = 298 K, we get: T' = 16 x 298 K = 4768 K So the correct answer is 4768.0K.
Ajụjụ 5 Ripọtì
2-methylprop-1-ene is a structural isomer of?
Ajụjụ 6 Ripọtì
H+ + OH− → H2 O
The equation above illustrates
Ajụjụ 7 Ripọtì
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Ajụjụ 8 Ripọtì
Which of the following roles does sodium chloride play in preparation? It
Akọwa Nkọwa
The role that sodium chloride (NaCl) plays in soap preparation is to separate soap from glycerol. When fats or oils are hydrolyzed with an alkali, such as sodium hydroxide (NaOH), the result is a mixture of soap and glycerol. Adding NaCl to this mixture helps to induce the precipitation of the soap, allowing it to be separated from the glycerol. This process is known as "salting out" and is used to purify the soap and remove impurities. Sodium chloride does not react with glycerol or accelerate the decomposition of fat and oil. Also, it does not convert the fatty acid to its sodium salt as this conversion is done by the alkali (such as NaOH) during the saponification process.
Ajụjụ 9 Ripọtì
The removal of rust from iron by treatment with tetraoxosulphate (vi) acid is based on the
Ajụjụ 10 Ripọtì
Which of the following statement is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide?
Akọwa Nkọwa
The statement that is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide is: - 3 moles of NaOH are required for each mole of glyceride. During the hydrolysis of a glyceride (a triglyceride), the ester bonds between the fatty acid chains and glycerol are broken by the action of a strong base like sodium hydroxide. This results in the formation of glycerol and the corresponding salts of fatty acids, which are commonly known as "soaps." The reaction can be represented by the following equation: Triglyceride + 3 NaOH → 3 soap + glycerol As per the equation, 3 moles of NaOH are required to hydrolyze one mole of glyceride, and 3 moles of soap and one mole of glycerol are produced. The use of concentrated sulfuric acid (H2SO4) is not essential for the completion of the reaction, but it can be used as a catalyst to speed up the reaction.
Ajụjụ 11 Ripọtì
The IUPAC nomenclature of the structure is
Akọwa Nkọwa
The IUPAC nomenclature of the structure is "2-chloro-2-methylbutane". The name is derived by first identifying the longest carbon chain, which in this case contains four carbon atoms (butane). The carbon chain is numbered from one end to the other, giving the substituents the lowest possible numbers. Starting from either end, we can see that the first carbon atom has a chlorine atom attached to it, which is represented by the prefix "chloro-". Moving along the chain, the second carbon atom has a methyl group attached to it, which is represented by the prefix "methyl-". Since the substituents are in the second position from each other, we use the prefix "di-" to indicate two substituents in this position. Finally, we use the suffix "-ane" to indicate that the molecule is an alkane. Therefore, the correct name for this molecule is "2-chloro-2-methylbutane".
Ajụjụ 13 Ripọtì
The sub-atomic particles located in the nucleus of an atom are?
Akọwa Nkọwa
The sub-atomic particles located in the nucleus of an atom are neutron and proton. The nucleus is the dense core of an atom that contains most of its mass. Protons are positively charged particles found in the nucleus, and they determine the atomic number of the element. Neutrons are neutral particles found in the nucleus, and they help stabilize the nucleus by balancing the repulsive forces between the positively charged protons. Electrons, on the other hand, are negatively charged particles that are located outside the nucleus in energy levels or shells. They are attracted to the positively charged nucleus by electrostatic forces and are involved in chemical bonding between atoms. The number of protons in the nucleus determines the identity of the element, while the number of neutrons determines its isotopes. Isotopes of an element have the same number of protons but different numbers of neutrons in the nucleus. In summary, the two sub-atomic particles located in the nucleus of an atom are neutron and proton.
Ajụjụ 14 Ripọtì
The IUPAC name for CICH2-CH2-CH2-OH is
Akọwa Nkọwa
The IUPAC name for CICH2-CH2-CH2-OH is 3-chloropropan-1-ol. To name the compound using the IUPAC nomenclature system, we start by identifying the longest continuous chain of carbon atoms that contains the functional group (-OH). In this case, the longest chain contains three carbon atoms, so the root name is propane. Next, we identify the position of the substituent (-Cl) on the chain. The substituent is attached to the third carbon atom in the chain, so the name of the compound becomes 3-chloropropane. Finally, we add the suffix -ol to indicate that the compound contains an alcohol functional group (-OH), so the complete name of the compound is 3-chloropropan-1-ol. Therefore, the correct answer is 3-chloropropan-1-ol.
Ajụjụ 15 Ripọtì
Akọwa Nkọwa
The addition of charcoal to the filter bed of sand during water treatment for township supply is to remove odors and improve the taste of the water. Charcoal is a porous material that can adsorb impurities and chemicals from the water, such as dissolved organic matter that can contribute to unpleasant tastes and odors. This process helps to produce a better-quality drinking water that is free from unpleasant tastes and odors. It should be noted that while the addition of charcoal can help remove impurities, it does not kill germs or prevent tooth decay or goiter. Other water treatment methods, such as disinfection with chlorine or ultraviolet light, are required to kill harmful microorganisms and ensure the safety of the drinking water.
Ajụjụ 16 Ripọtì
Alkanes are used mainly?
Ajụjụ 17 Ripọtì
Ethene, when passed into concentrated H2SO4, is rapidly absorbed. The product is diluted with water and then warmed to produce
Akọwa Nkọwa
When ethene is passed into concentrated H2SO4, it undergoes electrophilic addition reaction to form ethyl hydrogen sulfate as the product. The reaction mixture is then diluted with water and warmed to produce ethanol as the main product. Therefore, the answer is ethanol.
Ajụjụ 18 Ripọtì
Silver chloride turns gray when exposed to sunlight because
Ajụjụ 19 Ripọtì
N2 O4 ? 2NO2 (? = -ve)
From the reaction above, which of these conditions would produce the highest equilibrium yield for N2 O4 ?
Akọwa Nkọwa
The highest equilibrium yield of N2O4 would be produced at low temperature and low pressure. In a chemical reaction, the position of the equilibrium can be influenced by changing the temperature or pressure. A decrease in temperature or an increase in pressure favors the side of the reaction with the fewer moles of gas (in this case, N2O4). This means that, if the temperature is low and the pressure is low, there will be more N2O4 at equilibrium, as the reaction will shift to the right to counteract the reduction in the concentration of N2O4. So, low temperature and low pressure would produce the highest equilibrium yield of N2O4.
Ajụjụ 20 Ripọtì
The dehydration of CH3 CH2 CH2 CH2 OH will give?
Ajụjụ 21 Ripọtì
Which of the following constitutes a mixture? I. Petroleum II. Rubber latex III. Vulcanizer’s solution IV. Carbon (iv) sulphide
Akọwa Nkọwa
Ajụjụ 23 Ripọtì
How many neutrons are present in atom with mass number and atomic number 37 and 17 respectively?
Akọwa Nkọwa
The atomic number of an atom represents the number of protons in the nucleus of the atom. Since the atomic number given is 17, it means that there are 17 protons in the nucleus. The mass number of an atom represents the total number of protons and neutrons present in the nucleus. Therefore, if the mass number is given as 37, it means that the total number of protons and neutrons in the nucleus is 37. To determine the number of neutrons in the nucleus, we can subtract the atomic number (which represents the number of protons) from the mass number (which represents the total number of protons and neutrons). Thus, the number of neutrons in the atom with a mass number of 37 and an atomic number of 17 is: Number of neutrons = Mass number - Atomic number = 37 - 17 = 20 Therefore, the answer is 20.
Ajụjụ 24 Ripọtì
A certain liquid has a high boiling point. It is viscous, non-toxic, and miscible with water to be hygroscopic; this liquid most likely to be
Akọwa Nkọwa
The liquid is most likely to be option number 4: CH3OHCHOH2OH, which is also known as glycerol or glycerin. Glycerol has a high boiling point of 290°C, which is much higher than the boiling points of the other options. It is also a viscous liquid, which means it is thick and sticky. Glycerol is non-toxic, and it is often used in food, pharmaceuticals, and cosmetics. Furthermore, glycerol is miscible with water, which means that it can be easily mixed with water to form a homogeneous solution. It is also hygroscopic, which means that it can absorb water from the air. These properties make glycerol a useful substance in many applications, such as as a moisturizer in skincare products or as a humectant in food processing.
Ajụjụ 25 Ripọtì
A piece of radioactive element has initially 8.0×10^22 atoms. The half life of two days after 16 days the number of atom is
Ajụjụ 26 Ripọtì
Which of the following increases as boiling water changes to steam?
Akọwa Nkọwa
The degree of disorder of the system increases as boiling water changes to steam. When water is boiled and changes to steam, the water molecules gain energy and become more disordered, which means that the molecules move more rapidly and the entropy of the system increases. The temperature of the system also increases during this process, but the degree of disorder is the factor that specifically increases as the water changes to steam. The number of molecules and activation energy remain constant during this phase transition.
Ajụjụ 27 Ripọtì
Which of the following is used as a moderator to control nuclear fission?
Akọwa Nkọwa
Heavy water (D2O) is used as a moderator to control nuclear fission. A moderator is a substance that is used to slow down the neutrons produced in a nuclear reaction, making them more likely to be captured by the fuel nuclei and causing further fission. Heavy water is a type of water that contains a larger amount of the isotope deuterium (D) than regular water. Deuterium has an extra neutron compared to the more common hydrogen isotope, and this makes heavy water more effective at slowing down neutrons than regular water. Lead, iron, and chromium are not typically used as moderators in nuclear reactors. Lead can be used as a shield to absorb radiation, while iron and chromium are used in the construction of the reactor vessel and other components.
Ajụjụ 28 Ripọtì
Which of the following conducts electricity
Akọwa Nkọwa
Graphite is the option that conducts electricity.
Ajụjụ 29 Ripọtì
The following non-metal form acidic oxides with oxygen except?
Akọwa Nkọwa
An acidic oxide is an oxide that reacts with water to form an acidic solution. Non-metals have a greater tendency to form acidic oxides than metals. Therefore, among the given options, the non-metal that does not form an acidic oxide with oxygen would be the one that does not react with water to form an acidic solution. Out of the given options, chlorine is the non-metal that does not form acidic oxides with oxygen. Chlorine reacts with oxygen to form a number of oxides such as chlorine monoxide (Cl2O), chlorine dioxide (ClO2), and chlorine trioxide (ClO3), but none of these oxides react with water to form an acidic solution. Instead, they react with water to form oxyacids or oxoacids such as hypochlorous acid (HClO), chlorous acid (HClO2), and chloric acid (HClO3), which are stronger acids than the oxides. Therefore, the correct answer is chlorine.
Ajụjụ 30 Ripọtì
A chemical widely used as a fertilizer is?
Akọwa Nkọwa
The chemical widely used as a fertilizer is nitrochalk. Nitrochalk is a type of fertilizer that contains a mixture of ammonium nitrate and calcium carbonate. Ammonium nitrate provides the necessary nitrogen for plant growth, while calcium carbonate helps to balance the soil's pH level. This combination of nutrients helps to promote healthy plant growth and increase crop yields. Nitrochalk is commonly used in agriculture and gardening to fertilize crops such as corn, wheat, and soybeans, as well as fruits and vegetables.
Ajụjụ 31 Ripọtì
Which of the following substances is not a homogeneous mixture?
Akọwa Nkọwa
The substance that is not a homogeneous mixture is flood water. Flood water is typically a mixture of various substances, such as sediment, dirt, debris, and organic matter, that have been carried along by the water. As such, flood water is usually a heterogeneous mixture, meaning that it does not have a uniform composition throughout. In contrast, filtered sea water, soft drinks, and writing ink are all examples of homogeneous mixtures, where the components are evenly distributed and the mixture has a uniform composition throughout.
Ajụjụ 32 Ripọtì
A quantity of air passed through a weighted amount of alkaline pyrogallol. An increase in the weight of the pyrogallol would result from the absorption of
Akọwa Nkọwa
When air is passed through alkaline pyrogallol, the oxygen in the air is absorbed by the pyrogallol, resulting in an increase in the weight of the pyrogallol. The other gases in air, namely nitrogen, neon, and argon, do not react with pyrogallol under these conditions. Therefore, the answer is oxygen.
Ajụjụ 33 Ripọtì
There is a large temperature interval between the melting point and the boiling point of metal because:
Akọwa Nkọwa
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Ajụjụ 34 Ripọtì
The pollutant usually presents in a city which generates its electricity from coal?
Akọwa Nkọwa
The pollutant that is usually present in a city that generates its electricity from coal is sulfur dioxide (SO2), also known as sulfur(iv)oxide. When coal is burned to generate electricity, sulfur compounds in the coal are released into the air as SO2. This gas can react with other pollutants and atmospheric conditions to form smog, which can be harmful to human health and the environment. Therefore, it is important to reduce the use of coal in electricity generation and promote cleaner and more sustainable energy sources to reduce the levels of SO2 and other harmful pollutants in the air.
Ajụjụ 35 Ripọtì
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Ajụjụ 36 Ripọtì
Chlorine is a common bleaching agent. This is not true with
Akọwa Nkọwa
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Ajụjụ 37 Ripọtì
In the extraction of iron, hot air is introduced into the blast furnace through?
Akọwa Nkọwa
In the extraction of iron, hot air is introduced into the blast furnace through tuyeres. Tuyeres are nozzles that are located at the bottom of the blast furnace, and they are used to blow hot air into the furnace. The hot air helps to burn the coke (a fuel made from coal) which provides the heat needed to melt the iron ore. The air also helps to remove the waste gases that are produced during the reaction, allowing the iron to be extracted more efficiently.
Ajụjụ 38 Ripọtì
Copper (II) tetraoxosulphate (IV) is widely used as
Akọwa Nkọwa
Copper (II) tetraoxosulphate (IV), also known as copper sulfate or CuSO4, is widely used as a fungicide and a disinfectant. As a fungicide, copper sulfate is effective in controlling fungal diseases in plants, including mildew, leaf spots, and blights. It is also used as a fungicide in swimming pools to prevent the growth of algae. As a disinfectant, copper sulfate is effective in killing bacteria and viruses. It is used in a variety of applications, including in the production of animal feed, as a preservative for wood, and in water treatment to kill bacteria and algae. While copper sulfate has been used as a fertilizer in the past, its use in this capacity has largely been replaced by other compounds. It is not commonly used as a purifier.
Ajụjụ 40 Ripọtì
Electrons enter into orbitals in order of increasing energy as exemplified by?
Ị ga-achọ ịga n'ihu na omume a?