Ana ebu...
|
Tẹ & Di mu lati Gbe Yika |
|||
|
Pịa Ebe a ka Imechi |
|||
Ajụjụ 1 Ripọtì
The momentum of a car moving at a constant speed in a circular track
Akọwa Nkọwa
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Ajụjụ 2 Ripọtì
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Akọwa Nkọwa
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Ajụjụ 3 Ripọtì
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Akọwa Nkọwa
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Ajụjụ 4 Ripọtì
According to kinetic molecular model, in gases
Akọwa Nkọwa
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Ajụjụ 5 Ripọtì
The value of T in the figure above is
Akọwa Nkọwa
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Ajụjụ 6 Ripọtì
Radio waves belongs to the class of ware whose velocity is about
Akọwa Nkọwa
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Ajụjụ 7 Ripọtì
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Akọwa Nkọwa
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Ajụjụ 8 Ripọtì
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Akọwa Nkọwa
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
| using | α | = | l2 - l1 l1 ΔT |
| 15(10) | = | l2 - l1 2.5(5) |
| l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Ajụjụ 9 Ripọtì
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Akọwa Nkọwa
P = 0.45cm, L = 60cm, Eff = 75/π%
| VR | (Screw | system) | = | 2πrP | = | 2πLP |
| M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Ajụjụ 10 Ripọtì
The volume of a stone having an irregular shape can be determined using?
Akọwa Nkọwa
The volume of a stone with an irregular shape can be determined using a measuring cylinder. A measuring cylinder is a glass or plastic container with a narrow cylindrical shape and markings on the side to indicate the volume it contains. To determine the volume of an irregularly shaped stone, you would fill the measuring cylinder with water, carefully lower the stone into the water, and note the increase in the volume of the water. The difference in the volume of the water before and after the stone was added is equal to the volume of the stone. The meter rule, vernier calliper, and micrometer screw gauge are all measuring instruments, but they are not designed to measure the volume of irregularly shaped objects. The meter rule is a measuring tool used for measuring length. The vernier calliper is used for measuring the diameter of objects, and the micrometer screw gauge is used for precise measurements of small distances.
Ajụjụ 12 Ripọtì
In the molecular explanation, heat is transferred by the
Akọwa Nkọwa
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Ajụjụ 13 Ripọtì
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Akọwa Nkọwa
all the parallel forces must be equal in magnitude and direction
Ajụjụ 14 Ripọtì
A cone is in unstable equilibrium has its potential energy
Akọwa Nkọwa
In unstable equilibrium, potential energy decreases as the height decreases.
Ajụjụ 15 Ripọtì
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Akọwa Nkọwa
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Ajụjụ 16 Ripọtì
The conductivity of gases at low pressure can be termed as
I. hot cathode emission
II. thermo ionic emission
III. cold cathode emission
IV. Field emission
Akọwa Nkọwa
As conduction of gases is at low pressure and high voltage, called field or cold cathode emission.
Ajụjụ 17 Ripọtì
Which of the following readings cannot be determined with a meter rule?
Akọwa Nkọwa
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Ajụjụ 18 Ripọtì
Which of the following equations is the correct definition of the reactance of an indicator L?
Akọwa Nkọwa
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Ajụjụ 19 Ripọtì
The equilibrium position of objects in any field corresponds to situation of
Akọwa Nkọwa
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Ajụjụ 21 Ripọtì
When water is boiling, it
Akọwa Nkọwa
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Ajụjụ 22 Ripọtì
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Akọwa Nkọwa
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Ajụjụ 23 Ripọtì
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Akọwa Nkọwa
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
| h | = | 200.8 | = | 25cm |
Ajụjụ 24 Ripọtì
A coil X is moved quickly away from the end Y of a stationary metal bar and a current then flows in X as shown above.
Then
Akọwa Nkọwa
N - S magnet is moved towards a coil production clockwise direction of current in the coil.
- This is the same as a coil moved away from S-N (Y - North pole)
Ajụjụ 25 Ripọtì
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Akọwa Nkọwa
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Ajụjụ 26 Ripọtì
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Akọwa Nkọwa
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Ajụjụ 27 Ripọtì
The angular dispersion of a prism depends on
Akọwa Nkọwa
Dispersion is due to different refractive indices speeds and wavelengths.
Ajụjụ 29 Ripọtì
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Akọwa Nkọwa
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Ajụjụ 30 Ripọtì
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Akọwa Nkọwa
R = th = 2cm, d = 0.67cm
| n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Ajụjụ 31 Ripọtì
In the molecular explanation of conduction, heat is transferred by the
Akọwa Nkọwa
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Ajụjụ 32 Ripọtì
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Akọwa Nkọwa
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Ajụjụ 33 Ripọtì
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Akọwa Nkọwa
Depth of sea can be measured by echo, a reflected sound waves.
Ajụjụ 34 Ripọtì
Ripple in a power supply unit is caused by
Akọwa Nkọwa
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Ajụjụ 35 Ripọtì
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Akọwa Nkọwa
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Ajụjụ 36 Ripọtì
The pin-hole camera produces a less sharply defined image when the
Akọwa Nkọwa
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Ajụjụ 37 Ripọtì
Electrons were discovered by
Akọwa Nkọwa
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Ajụjụ 38 Ripọtì
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Akọwa Nkọwa
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Ajụjụ 39 Ripọtì
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Akọwa Nkọwa
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Ajụjụ 40 Ripọtì
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Akọwa Nkọwa
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Ị ga-achọ ịga n'ihu na omume a?