Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
The hybridization in the compound CH3−CH2−C≡H is
Antwoorddetails
The hybridization in a and b is sp3 hybridization while in c and d is sp hybridization.
Vraag 2 Verslag
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Antwoorddetails
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Vraag 3 Verslag
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Antwoorddetails
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Vraag 4 Verslag
The electronic configuration of element Z is 1s2 2s2 2p6 3s2 3p1 . What is the formula of the compound formed between Z and tetraoxosulphate (VI) ion.
Antwoorddetails
Z = 1s2
2s2
2p6
3s2
3p1
?
We have Z3+
and SO2?4
The reaction : Z3+
+ SO2?4
?
Z2
(SO4
)3
.
Vraag 5 Verslag
A radioactive nucleus has a half-life of 20 years, starting with 100,000 particles, how many particles will be left exactly at the end of 40 years
Antwoorddetails
The half-life of a radioactive nucleus is the time it takes for half of its particles to decay. This means that after 20 years, 100,000 particles will become 50,000 particles. After 40 years, we can find the number of particles remaining by counting the number of half-lives that have passed. Since 40 years is double the half-life of 20 years, this means that two half-lives have passed, so the number of particles will be halved twice. Starting with 100,000 particles: - After 1 half-life (20 years), there will be 50,000 particles remaining. - After 2 half-lives (40 years), there will be 25,000 particles remaining. So, exactly at the end of 40 years, there will be 25,000 particles remaining.
Vraag 6 Verslag
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Vraag 7 Verslag
The two ions responsible for hardness in water are
Antwoorddetails
The ions responsible for hardness in water are Ca2+ and/or Mg2+. Hardness in water refers to the presence of calcium and magnesium ions, which are commonly found in natural water sources such as rivers, lakes, and groundwater. These ions can react with soap to form insoluble compounds, reducing the effectiveness of soap and causing scaling in pipes and appliances. The hardness of water is often measured in terms of the concentration of calcium and magnesium ions, expressed as calcium carbonate equivalents (CaCO3).
Vraag 8 Verslag
Which of the following could not be alkane?
Antwoorddetails
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Vraag 9 Verslag
What technique is suitable for separating a binary solution of potassium chloride and potassium trioxochlorate (V)?
Antwoorddetails
Fractional crystallization is the most suitable technique for separating a binary solution of potassium chloride and potassium trioxochlorate (V). This is because fractional crystallization is a process that separates a mixture of substances based on their solubility in a solvent at a particular temperature. In this case, potassium chloride and potassium trioxochlorate (V) have different solubilities in a solvent such as water at different temperatures. By carefully controlling the temperature, the solubility of each compound can be selectively increased or decreased, allowing them to be separated by crystallization. The less soluble compound will form crystals first and can be separated from the more soluble compound, which remains in the solution. Therefore, fractional crystallization can be used to separate potassium chloride and potassium trioxochlorate (V) in a binary solution.
Vraag 10 Verslag
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Antwoorddetails
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Vraag 11 Verslag
The part of the total energy of a system that accounts for the useful work done in a system is known as
Antwoorddetails
The part of the total energy of a system that accounts for the useful work done in a system is known as "Gibbs free energy". Gibbs free energy is a thermodynamic property that represents the amount of energy that can be converted into useful work in a system. It takes into account both the energy of the system and the entropy, or disorder, of the system. In other words, Gibbs free energy is a measure of the energy available to do work, taking into account the energy that is unavailable due to entropy. In simple terms, if a system has a high Gibbs free energy, it has a lot of energy available to do work, and if a system has a low Gibbs free energy, it has little energy available to do work.
Vraag 12 Verslag
If acidified Potassium Dichromate(VI) (K2 Cr2 O7 ) acts as oxidizing agent, color changes from
Antwoorddetails
Potassium Dichromate (VI), when it is acidified, acts as an oxidizing agent. When this happens, the color changes from orange to green. This is because the orange color of the potassium dichromate is due to the presence of Cr(VI) ions, which are oxidized to Cr(III) ions. The green color that is produced is due to the formation of chromium(III) ions. In this reaction, the dichromate ions are being oxidized, which means that they are losing electrons, and the chromium ions are being reduced, which means that they are gaining electrons. The transfer of electrons causes the color change from orange to green.
Vraag 13 Verslag
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Antwoorddetails
Vraag 14 Verslag
The following are isoelectronic ions except
Antwoorddetails
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Vraag 15 Verslag
A synthetic rubber is obtained from the polymerization of
Antwoorddetails
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Vraag 16 Verslag
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Antwoorddetails
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Vraag 17 Verslag
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Antwoorddetails
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Vraag 18 Verslag
Which of the following conditions will most enhance the spontaneity of a reaction?
Antwoorddetails
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Vraag 19 Verslag
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Antwoorddetails
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Vraag 20 Verslag
In the reaction between sodium hydroxide and tetraoxosulphate (VI) solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralize 10cm3 of 1.25 molar tetraoxosulphate (vi) acid?
Antwoorddetails
Equation of reaction : 2NaOH + H2 SO4 → Na2 SO4 + 2H2 O
Concentration of a base, CB = 0.5M
Volume of acid, VA = 10cm3
Concentration of an acid, CA = 1.25M
Volume of base, VB = ?
Recall:
CAVACBVB=nAnB
... (1)
N.B: From the equation,
nAnB=12
From (1)
1.25×100.5×VB=12
12.50.5VB=12
25 = 0.5VB
VB = 50.0 cm3
Vraag 21 Verslag
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Antwoorddetails
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Vraag 22 Verslag
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Antwoorddetails
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Vraag 23 Verslag
Which of the following pairs cannot be represented with a chemical formula?
Antwoorddetails
The pair that cannot be represented with a chemical formula is air and bronze. Air is a mixture of several gases, primarily nitrogen (N₂) and oxygen (O₂), with small amounts of other gases such as argon (Ar), carbon dioxide (CO₂), and neon (Ne). Since air is a mixture and not a pure substance, it cannot be represented by a chemical formula. Bronze, on the other hand, is an alloy composed mainly of copper (Cu) and tin (Sn) with small amounts of other metals. The composition of bronze can vary depending on the specific alloy, but it can be represented by a chemical formula such as CuSn. Sodium chloride (NaCl) is a compound composed of sodium (Na) and chlorine (Cl) in a fixed ratio of 1:1, and it can be represented by a chemical formula. Similarly, copper (Cu) and sodium chloride (NaCl) can each be represented by a chemical formula. Cu is an element, so its chemical formula is simply its symbol, while NaCl is a compound with a fixed ratio of sodium and chlorine atoms. Caustic soda (sodium hydroxide, NaOH) and washing soda (sodium carbonate, Na₂CO₃) are both compounds that can be represented by chemical formulas. NaOH consists of one sodium atom, one oxygen atom, and one hydrogen atom, while Na₂CO₃ consists of two sodium atoms, one carbon atom, and three oxygen atoms.
Vraag 25 Verslag
By what amount must the temperature of 200cm3 of Nitrogen at 27°C be increased to double the pressure if the final volume is 150cm3 (Assume ideality)
Antwoorddetails
Using the ideal gas law and equation:
P1V1T1=P2V2T2
P1×200cm3300K=2P×150cm3T2
Cross multiply:
T2=300×150×2P200×P
=450K
or 177∘C
Don't forget to convert to ∘C
Vraag 26 Verslag
Which of the following does not support the fact that air is a mixture?
Antwoorddetails
The option that does not support the fact that air is a mixture is "the constituents of air are in a fixed proportion by mass". Air is a mixture of different gases, primarily nitrogen (78%) and oxygen (21%), with small amounts of other gases such as carbon dioxide, argon, and neon. The proportion of each gas in air is not fixed and can vary depending on the location and other factors. For example, the amount of carbon dioxide in air can increase in areas with high levels of pollution, while the proportion of oxygen can decrease at high altitudes. Therefore, the composition of air is not in a fixed proportion by mass. On the other hand, the fact that air cannot be represented with a chemical formula and its constituents can be separated by physical means support the fact that air is a mixture. A chemical formula represents a pure substance, and since air is a mixture of gases, it cannot be represented by a single formula. Air can be separated into its individual components through physical means such as distillation or filtration, which is a characteristic of mixtures.
Vraag 27 Verslag
The oxidation state(s) of nitrogen in ammonium nitrite is/are
Antwoorddetails
Ammonium nitrite = NH4
NO2
NH+4
: Let the oxidation number of Nitrogen = x
x + 4 = 1 ⟹
x = 1 - 4
x = -3
NO−2
: x - 4 = -1
x = -1 + 4 ⟹
x = +3.
The oxidation numbers for Nitrogen in Ammonium Nitrite = -3, +3.
Vraag 28 Verslag
Which of the following is the best starting material for the preparation of oxygen? Heating of trioxonitrate (v) with
Antwoorddetails
Vraag 29 Verslag
Which of the following pollutants will lead to the depletion of ozone layer?
Antwoorddetails
The pollutant that leads to the depletion of the ozone layer is chlorofluorocarbon (CFCs). CFCs are man-made chemicals that were widely used in the past as refrigerants, solvents, and propellants. When CFCs are released into the atmosphere, they rise into the stratosphere, where they come into contact with ozone molecules. The chlorine atoms in CFCs react with ozone, breaking apart the ozone molecules and causing a reduction in the overall amount of ozone in the stratosphere. This process continues until all of the ozone-depleting chlorine atoms have been depleted. The resulting decrease in ozone in the stratosphere leads to an increase in the amount of harmful ultraviolet radiation that reaches the Earth's surface, which can have negative impacts on human health and the environment.
Vraag 30 Verslag
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Antwoorddetails
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Vraag 31 Verslag
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Antwoorddetails
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Vraag 32 Verslag
A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen. If the molar mass of the compound is 180. Find the molecular formula.
[H = 1, C = 12, O = 16]
Antwoorddetails
The molecular formula of a compound is determined by the number of atoms of each element present in the molecule. To find the molecular formula, we need to determine the number of atoms of each element in the compound. First, we convert the percent composition to grams. For example, 40.0% carbon means 40.0 g of carbon per 100 g of compound. Then we divide the number of grams of each element by the molar mass of each element. For example, 40.0 g of carbon divided by the molar mass of carbon (12 g/mol) gives us 3.33 mol of carbon. Next, we convert the number of moles of each element to the number of atoms by multiplying the number of moles by Avogadro's number (6.022 x 10^23 atoms/mol). Finally, we balance the numbers of atoms of each element by dividing them by the smallest number of atoms of all the elements and rounding to the nearest whole number. In this case, the smallest number of atoms is 2, which is the number of hydrogen atoms. So, we divide the number of atoms of carbon and oxygen by 2 to balance the numbers of atoms of all the elements. Therefore, the molecular formula of the compound is C6H12O6.
Vraag 33 Verslag
Which of the following will give a precipitate with an aqueous solution of copper (I) chloride?
Antwoorddetails
Vraag 34 Verslag
Which of the following represents the kind of bonding present in ammonium chloride?
Antwoorddetails
Ammonium chloride contains both ionic and covalent bonds. In ammonium chloride, the ammonium ion (NH4+) is positively charged and the chloride ion (Cl-) is negatively charged. These ions are held together by ionic bonds, which are formed between positively and negatively charged ions. However, the bond between the hydrogen atom in the ammonium ion and the nitrogen atom in the ammonium ion is also a covalent bond. This type of covalent bond is known as a dative covalent bond, or a coordinate covalent bond, because the electron pair being shared is supplied by one atom only (the nitrogen atom in this case). So, the kind of bonding present in ammonium chloride is both ionic and dative covalent. In simple terms, ammonium chloride contains both ionic bonds between its positive and negative ions, and a dative covalent bond between the hydrogen atom and nitrogen atom within the ammonium ion.
Vraag 35 Verslag
A solution X, on mixing with AgNO3 solution gives a white precipitate soluble in aqueous NH3 , a solution Y, when also added to X, also gives a white precipitate which is soluble when heated solutions X and Y respectively contain
Vraag 36 Verslag
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Antwoorddetails
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Vraag 37 Verslag
Hydrogen diffused through a porous plug
Antwoorddetails
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Vraag 38 Verslag
A secondary alkanol can be oxidized to give an
Antwoorddetails
A secondary alkanol is an alcohol with two carbon atoms attached to the carbon bearing the hydroxyl group (-OH). Secondary alkanols can be oxidized by a strong oxidizing agent, such as potassium dichromate (K2Cr2O7), to give an alkanone. During the oxidation process, the oxygen atom from the oxidizing agent replaces the hydroxyl group of the secondary alkanol to form a carbonyl group (C=O) in the alkanone. Since alkanones contain a carbonyl group, they are also known as ketones. Therefore, the answer to the question is alkanone, as secondary alkanols can be oxidized to form ketones.
Vraag 39 Verslag
Which of the following sets of operation will completely separate a mixture of sodium chloride, sand and iodine?
Antwoorddetails
The set of operations that will completely separate a mixture of sodium chloride, sand, and iodine is: - filtration, to separate the sand and iodine from the sodium chloride - evaporation to dryness, to concentrate the sodium chloride solution and remove any remaining water - sublimation, to separate the iodine as a solid from the remaining sodium chloride By using these operations, you can separate each component of the mixture into separate, pure forms. The order of the operations is important because each step must be done in a way that effectively separates the components and does not interfere with subsequent steps.
Wilt u doorgaan met deze actie?