Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
If p + 1, 2P - 10, 1 - 4p2are three consecutive terms of an arithmetic progression, find the possible values of p
Antwoorddetails
2p - 10 = p+1+1−4P22
(Arithmetic mean)
= 2(2p - 100 = p + 2 - 4P2)
= 4p - 20 = p + 2 - 4p2
= 4p2 + 3p - 22 = 0
= (p - 2)(4p + 11) = 0
∴ p = 2 or -411
Vraag 2 Verslag
If x is a positive real number, find the range of values for which 13x + 12 > 14x
Antwoorddetails
13x
+ 12
> 14x
= 2+3x6x
> 14x
= 4(2 + 3x) > 6x = 12x2 - 2x = 0
= 2x(6x - 1) > 0 = x(6x - 1) > 0
Case 1 (-, -) = x < 0, 6x -1 < 0
= x < 0, x < 16 = x < 16 (solution)
Case 2 (+, +) = x > 0, 6x -1 > 0 = x > 0, x > 16
Combining solutions in cases(1) and (2)
= x > 0, x < 16
= 0 < x < 16
Vraag 3 Verslag
A chord of a circle radius √3cm subtends an angle of 60∘ on the circumference of he circle. Find the length of the chord
Antwoorddetails
Vraag 4 Verslag
Let = (1001) p = (2345) Q = (u4+u−2vv) be 2 x 2 matrices such that PQ = 1. Find (u, v)
Antwoorddetails
PQ = (2345)
(u4+u−2vv)
= ((2u−6v2(4+u)+3v)4u−10v4(4+u)+5v)
= (1001)
2u - 6v = 1.....(i)
4u - 10v = 0.......(ii)
2(4 + u) + 3v = 0......(iii)
4(4 + u) + 5v = 1......(iv)
2u - 6v = 1 .....(i) x 2
4u - 10v = 0......(ii) x 1
4u - 12v = 0-4u - 10v = 0
-2v = 2 = v = -1
2u - 6(-1) = 1 = 2u = 5
u = -52
∴ (U, V) = (-52
- 1)
Vraag 5 Verslag
For what value of x does 6 sin (2x - 25)o attain its maximum value in the range 0o ? x ? 180o
Antwoorddetails
The maximum value of the function y = 6sin(2x-25) occurs when the argument of the sine function is equal to 90 degrees (or pi/2 radians), because the maximum value of the sine function is 1. So we need to solve the equation 2x-25 = 90. Adding 25 to both sides gives 2x = 115, and then dividing by 2 gives x = 57.5 degrees. Therefore, the answer is x = 57.5 degrees, which is the value of x where the function 6sin(2x-25) attains its maximum value in the given range.
Vraag 7 Verslag
Evaluate ∫π2 (sec2 x - tan2x)dx
Antwoorddetails
∫π2
(sec2 x - tan2x)dx
∫π2
dx = [X]π2
= π
- 2 + c
when c is an arbitrary constant of integration
Vraag 8 Verslag
If b3 = a-2 and c13 = a12 b, express c in terms of a
Antwoorddetails
c13
= a12
b
= a12
b x a-2
= a-32
= (c13
)3
= (a-32
)13
c = a-12
Vraag 10 Verslag
If the distance between the points (x, 3) and (-x, 2) is 5. Find x
Antwoorddetails
To solve the problem, we need to use the distance formula between two points in a coordinate plane. The distance formula is given by: d = sqrt[(x2 - x1)^2 + (y2 - y1)^2] where d is the distance between the two points (x1, y1) and (x2, y2). Using the given points, we have: (x2, y2) = (-x, 2) (x1, y1) = (x, 3) Substituting these values into the distance formula, we get: d = sqrt[(-x - x)^2 + (2 - 3)^2] Simplifying the expression inside the square root: d = sqrt[4x^2 + 1] We are given that d = 5, so we can substitute that into the equation and solve for x: 5 = sqrt[4x^2 + 1] 25 = 4x^2 + 1 24 = 4x^2 6 = x^2 x = sqrt(6) or x = -sqrt(6) Since we are only interested in the positive value of x, the answer is x = sqrt(6). Therefore, the correct option is: √
Vraag 11 Verslag
If x, y can take values from the set (1, 2, 3, 4), find the probability that the product of x and y is not greater than 6
Antwoorddetails
∣∣ ∣ ∣ ∣ ∣ ∣∣123411234224683369124481216∣∣ ∣ ∣ ∣ ∣ ∣∣
P (product of x and y not greater than 6) = 1016
= 58
Vraag 12 Verslag
If 10112 + x7 = 2510, solve for X.
Antwoorddetails
10112 + x7 = 2510 = 10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 2o
= 8 + 0 + 2 + 1
= 1110
x7 = 2510 - 1110
= 1410
71472R00R2
X = 207
Vraag 13 Verslag
TQ is tangent to circle XYTR, < YXT = 32∘
, RTQ = 40∘
. Find < YTR
Antwoorddetails
< TWR = < QTR = 40∘ (alternate segment)
< TWR = < TXR = 40∘ (Angles in the same segments)
< YXR = 40∘ + 32∘ = 72∘
< YXR + < YTR = 180∘ (Supplementary)
72∘ + < YTR = 180∘
< YTR = 180∘ - 72∘
= 108∘
Vraag 14 Verslag
Two chords PQ and RS of a circle intersected at right angles at a point inside the circle. If ∠QPR = 35o,find ∠PQS
Antwoorddetails
Since PQ and RS intersect inside the circle at right angles, then the line joining the point of intersection to the center of the circle will bisect both chords. Let O be the center of the circle, and let T be the point of intersection of the two chords. Then, angle QTR = 90 degrees and the angle subtended by chord PQ at the center O is twice angle QPR. Therefore, angle POQ = 2 * angle QPR = 70 degrees (since angle QPR = 35 degrees). Similarly, angle ROS = 70 degrees. Since PQ and RS are chords of a circle, then angle POQ = angle PTS and angle ROS = angle TQS. Thus, angle PTS + angle TQS = 140 degrees. Also, angle PTS + angle PTQ + angle QTS = 180 degrees (because they form a straight line). Therefore, angle TQS = 180 - 140 - 90 = 50 degrees. Since angle PQT = angle RQT (because they are opposite angles), then angle PQS = angle RQS = (180 - angle QTS)/2 = (180 - 50)/2 = 65 degrees. Therefore, the answer is 55 degrees.
Vraag 15 Verslag
The locus of all points at a distance 8cm from a point N passes through points T and S. If S is equidistant from T and N, find the area of triangle STN.
Vraag 16 Verslag
A market woman sells oil in cylindrical tins 10cm deep and 6cm in diameter at ₦15.00 each. If she bought a full cylindrical jug 18cm deep and 10cm in diameter for ₦50.00, how much did she make by selling all the oil?
Antwoorddetails
The volume of the cylindrical jug is given by V = πr^2h, where r = 5cm (radius = diameter/2) and h = 18cm. Thus, V = π(5cm)^2(18cm) = 450π cm^3. The volume of each cylindrical tin is given by V = πr^2h, where r = 3cm (radius = diameter/2) and h = 10cm. Thus, V = π(3cm)^2(10cm) = 90π cm^3. Since the jug contains oil that can fill 450π/90π = 5 cylindrical tins, the market woman sells 5 tins of oil. Therefore, the amount she makes by selling all the oil is 5 × ₦15.00 = ₦75.00. Since she bought the jug for ₦50.00, her profit is ₦75.00 - ₦50.00 = ₦25.00. Therefore, the market woman made ₦25.00 by selling all the oil. Hence, the answer is option D: ₦25.00.
Vraag 17 Verslag
The bar chart shows the distribution of marks scored by 60 pupils in a test in which the maximum score was 10. If the pass mark was 5, what percentage of the pupils failed the test?
Antwoorddetails
x012345678910f194710879821
no pupils who failed the test = 1 + 3 + 4 + 7 + 10
= 25
5 of pupils who fail = 2560 x 100%
= 41.70%
Vraag 18 Verslag
In the diagram above; O is the centre of the circle and |BD| = |DC|. If ∠DCB = 35o, find ∠BAO.
Antwoorddetails
Vraag 19 Verslag
Average hourly earnings(N)5−910−1415−1920−24No. of workers17322524
Estimate the mode of the above frequency distribution
Antwoorddetails
Class intervalsFClass boundary5−7174.5−9.510−14329.5−14.515−192514.5−19.520−242419.5−24.5
mode = 9 + D1D2+D1
x C
= 9.5 + 5(32−17)2(32)−17−25
= 9.5 + 7527
= 12.27
≈
2.3
Vraag 20 Verslag
The determinant of matrix ⎛⎜⎝x101−x2311+x4⎞⎟⎠ in terms of x is
Antwoorddetails
∣∣ ∣∣x101−x2311+x4∣∣ ∣∣
= x∣∣∣231+x4∣∣∣
- ∣∣∣1−x314∣∣∣
= 0
= x[8 - 3(1 + x)] - [4(1 - x)-3] - 0 = x[5 - 3x] - [1 - 4x]
= 5x - 3x2 -1 + 4x
= -3x2 + 9X - 1
Vraag 21 Verslag
If m and n are the mean and median respectively of the set of numbers 2, 3, 9, 7, 6, 7, 8, 5, find m + 2n to the nearest whole number
Antwoorddetails
To find the mean (m), you need to add up all the numbers in the set and then divide by the total number of numbers. In this case, the sum is 47 and the total number of numbers is 8, so the mean is 47/8 = 5.875. To find the median (n), you need to arrange the numbers in order from smallest to largest and then find the middle number. In this case, the numbers in order are: 2, 3, 5, 6, 7, 7, 8, 9. The middle number is 7, so the median is 7. To find m + 2n, you just need to substitute the values of m and n into the expression and solve. m + 2n = 5.875 + 2(7) = 19.875. To the nearest whole number, m + 2n is 20. Therefore, the answer is: 19.
Vraag 22 Verslag
From the top of a vertical mast 150m high., two huts on the same ground level are observed. One due east and the other due west of the mast. Their angles of depression are 60o and 45o respectively. Find the distance between the huts
Antwoorddetails
150Z
= tan 60o,
Z = 150tan60o
= 1503
= 50√3
cm
150XxZ
= tan45o = 1
X + Z = 150
X = 150 - Z
= 150 - 50√3
= 50( √3
- √3
)m
Vraag 23 Verslag
Differentiate xcosx with respect to x
Antwoorddetails
let y = xcosx
= x sec x
y = u(x) v (x0
dydx
= Udydx
+ Vdudx
dy x [secx tanx] + secx
x = x secx tanx + secx
Vraag 24 Verslag
Factorize r2 - r(2p + q) + 2pq
Antwoorddetails
To factorize the expression r2 - r(2p + q) + 2pq, we need to look for two numbers whose product is 2pq and whose sum is -r(2p + q). Let's try to break up -r(2p + q) into two parts such that their product is 2pq. We can write -r(2p + q) as -2rpq - rq2. Then, we can rewrite the expression as: r2 - 2rpq - rq2 + 2pq Now, we can group the first two terms and the last two terms together and factor them separately: r(r - 2pq) - q(r - 2pq) We can see that r - 2pq is a common factor, so we can factor it out: (r - 2pq)(r - q) Therefore, the factorization of r2 - r(2p + q) + 2pq is (r - 2pq)(r - q). So the correct option is (c) (r - q)(r - 2p).
Vraag 25 Verslag
The midpoint of the segment of the line y = 4x + 3 which lies between the x-ax 1 is and the y-ax 1 is
Antwoorddetails
To find the midpoint of a line segment, we need to find the average of the endpoints. The x-intercept of the line y = 4x + 3 is found by setting y = 0 and solving for x: 0 = 4x + 3 x = -3/4 So the x-coordinate of the midpoint is the average of -3/4 and 0: x = (-3/4 + 0)/2 = -3/8 To find the y-coordinate of the midpoint, we plug in x = -3/8 to the equation of the line: y = 4(-3/8) + 3 = -3/2 + 3 = 3/2 So the midpoint is (-3/8, 3/2). Therefore, the answer is (-3/8, 3/2).
Vraag 26 Verslag
The sum of the first three terms of a geometric progression is half its sum to infinity. Find the positive common ratio of the progression.
Antwoorddetails
Let the G.P be a, ar, ar2, S3 = 12
S
a + ar + ar2 = 12
(a1−r
)
2(1 + r + r)(r - 1) = 1
= 2r3 = 3
= r3 = 32
r(32
)13
= √32
Vraag 27 Verslag
a cylindrical drum of diameter 56 cm contains 123.2 litres of oil when full. Find the height of the drum in centimeters
Antwoorddetails
To solve the problem, we need to use the formula for the volume of a cylinder, which is V = πr²h, where V is the volume, r is the radius, and h is the height of the cylinder. We are given the diameter of the drum, which is 56 cm. To find the radius, we need to divide the diameter by 2: radius (r) = diameter / 2 = 56 cm / 2 = 28 cm We are also given that the drum contains 123.2 litres of oil when full. To convert litres to cubic centimeters, we need to multiply by 1000: 123.2 litres * 1000 = 123200 cubic centimeters Now we can use the formula for the volume of a cylinder to find the height (h): V = πr²h h = V / (πr²) h = 123200 / (π28²) h ≈ 123200 / 2463.47 h ≈ 50.00 cm Therefore, the height of the drum is approximately 50.00 cm.
Vraag 28 Verslag
In the figure, PQST is a parallelogram and TSR is a straight line. If the area of △
QRS is 20cm2, find the area of the trapezium PQRT.
Antwoorddetails
A△ = 12 x 8 x h = 20
= 12 x 8 x h = 4h
h = 204
= 5cm
A△ (PQTS) = L x H
A△ PQRT = A△ QSR + A△ PQTS
20 + 50 = 70cm2
ALTERNATIVE METHOD
A△ PQRT = 12 x 5 x 28
= 70cm2
Vraag 29 Verslag
In a recent zonal championship games involving 10 teams, teams X and Y were given probabilities 25 and 13 respectively of winning the gold in the football event. What is the probability that either team will win the gold?
Antwoorddetails
p(x) = 25
p(y) = 13
p(x or y) = p(x ∪ y)
= p(x) + p(y)
= 25
+ 13
= 115
Vraag 30 Verslag
The binary operation ⊕ is defined by x ∗ y = xy - y - x for all real values x and y. If x ∗ 3 = 2∗ , find x
Antwoorddetails
x ∗
y = xy - y - x, x ∗
3 = 3x - 3 - x = 2x - 3
2 ∗
x = 2x - x - 2 = x - 2
∴ 2x - 3 = x - 2
x = -2 + 3
= 1
Vraag 31 Verslag
find the equation of the curve which passes through by 6x - 5
Antwoorddetails
m = dydv
= 6x - 5
∫dy = ∫(6x - 5)dx
y = 3x2 - 5x + C
when x = 2, y = 5
∴ 5 = 3(2)2 - 5(2) +C
C = 3
∴ y = 3x2 - 5x + 3
Vraag 32 Verslag
The kinetic element with respect to the multiplication shown in the diagram below is
⊕pprsprprpqpqrsrrrrrsqsrq
Antwoorddetails
Vraag 33 Verslag
Evaluate [10.03 ÷ 10.024 ]-1 correct to 2 decimal places
Antwoorddetails
[10.03
+ 10.024
]
= [10.03×0.024
]-1
= [0.0240.003
]-1
= 0.030.024
= 3024
= 1.25
Vraag 34 Verslag
The shaded area represents
Antwoorddetails
m = y2−y1x2−x2=3−00−2=−32
= y−y1x−x1
m = y−3x ≥ −32
2(y - 3) ≥ - 3x = 2y - 6 ≥ - 3x
= 2y + 3x ≤ 6 ; x ≤ 0, y ≤ 0
Vraag 35 Verslag
The pie chart shows the monthly expenditure pf a public servant. The monthly expenditure on housing is twice that of school fees. How much does the worker spend on housing if his monthly income is ₦7200?
Antwoorddetails
Based on the information given in the pie chart, the monthly expenditure on school fees can be represented by the fraction 1/10 (since it is one-tenth of the total expenditure) and the monthly expenditure on housing can be represented by the fraction 2/10 (since it is twice the amount of school fees). To find out how much the worker spends on housing, we need to first calculate the total amount of money he spends on all his monthly expenses. From the pie chart, we see that the total monthly expenditure is represented by the fraction 7/10. If we let x represent the amount of money the worker spends on housing each month, we can set up the following equation to solve for x: x + (1/10)*7200 = (2/10)*7200 Simplifying the equation, we get: x + 720 = 1440 Subtracting 720 from both sides, we get: x = 720 Therefore, the worker spends ₦7200/10 = ₦720 on school fees each month, and ₦720 * 2 = ₦1440 on housing each month. So the answer is ₦2000.
Vraag 36 Verslag
A man is paid r naira per hour for normal work and double rate for overtime. if he does a 35-hour week which includes q hours of overtime, what is his weekly earning in naira?
Antwoorddetails
The cost of normal work = 35r
The cost of overtime = q x 2r = 2qr
The man's total weekly earning = 35r + 2qr
= r(35 + 2q)
Vraag 37 Verslag
Find the variance of the numbers k, k+1, k+2.
Antwoorddetails
To find the variance of the numbers k, k+1, k+2, we can use the formula for variance which is the average of the squared differences from the mean. First, we need to find the mean of the three numbers. Mean = (k + k + 1 + k + 2) / 3 = (3k + 3) / 3 = k + 1 So, the mean is k + 1. Next, we find the squared differences from the mean for each number: For k, the difference from the mean is k - (k+1) = -1. The squared difference is (-1)^2 = 1. For k+1, the difference from the mean is (k+1) - (k+1) = 0. The squared difference is 0^2 = 0. For k+2, the difference from the mean is (k+2) - (k+1) = 1. The squared difference is 1^2 = 1. Now we can find the variance: Variance = [(1^2 + 0^2 + 1^2) / 3] = 2/3 = 0.67 (rounded to two decimal places) Therefore, the answer is option (A) 2/3 or as a percentage approximately 66.7%.
Vraag 38 Verslag
Given that log4(y - 1) + log4(12 x) = 1 and log2(y + 1) + log2x = 2, solve for x and y respectively
Antwoorddetails
log4(y - 1) + log4(12
x) = 1
log4(y - 1)(12
x) →
(y - 1)(12
x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 →
(y + 1)x = 22 = 4.....(ii)
From equation (ii) x = 4y+1
........(iii)
put equation (iii) in (i) = y (y - 1)[12(4y−1
)] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = 4−3+1
= 4−2
X = 2
therefore x = -2, y = -3
Vraag 39 Verslag
When the expression pm2 + qm + 1 is divided by (m - 1), it has a remainder is 4, Find p and q respectively
Antwoorddetails
pm2 + qm + 1 = (m - 1) Q(x) + 2
p(1)2 + q(1) + 1 = 2
p + q + 1 = 2
p + q = 1.....(i)
pm2 + qm + 1 = (m - 1)Q(x) + 4
p(-1)2 + q(-1) + 1 = 4
p - q + 1 = 4
p - q = 3....(ii)
p + q = 1, p - q = -3
2p = -2, p = -1
-1 + q = 1
q = 2
Vraag 40 Verslag
In the diagram, QTR is a straight line and < PQT = 30?
. find the sin of < PTR
Antwoorddetails
10sin30o=15sinx=100.5=15sinx
1520=sinx
sin x = 1520=34
N.B x = < PRQ
Vraag 42 Verslag
If y = 243(4x + 5)-2, find dydx when x = 1
Antwoorddetails
To find dy/dx, we need to differentiate y with respect to x. We can start by using the chain rule, which states that if we have a function of the form f(g(x)), the derivative of that function with respect to x is f'(g(x)) * g'(x). In this case, we have y = 243(4x + 5)-2, which can be written as y = 243/(4x + 5)^2. Using the chain rule, we have: dy/dx = d/dx(243/(4x + 5)^2) = -2 * 243 / (4x + 5)^3 * d/dx(4x + 5) = -2 * 243 / (4x + 5)^3 * 4 = -1944 / (4x + 5)^3 Now, to find the value of dy/dx when x = 1, we just need to substitute x = 1 into the expression we found above: dy/dx = -1944 / (4(1) + 5)^3 = -1944 / 729 = -8/3 Therefore, the answer is option A: -83. To summarize, we used the chain rule to differentiate y with respect to x, which gave us an expression for dy/dx in terms of x. We then substituted x = 1 to find the value of dy/dx at that point.
Vraag 43 Verslag
Make ax the subject of formula x+1x?a
Antwoorddetails
x+ax?a
= m
x + a = mx - ma
a + ma = mx - x
a(m + 1) = x(m - 1)
ax
= m?1m+a
Vraag 44 Verslag
Express in partial fractions 11+26x2−x−1
Antwoorddetails
11+26x2−x−1
= 11+23x+1
= A3x+1
+ B2x−1
11x = 2 = A(2x - 1) + B(3x + 1)
put x = 12
= -−53
= -−53
A →
A = 1
∴ 11x+26x2−x−1
= 13x+1
+ 32x−1
Vraag 45 Verslag
Find the value of k if k?3+?2 = k?3?2
Antwoorddetails
k√3+√2
= k√3−2
k√3+√2
x √3−√2√3−√2
= k√3−2
= k(√3−√2
)
= k√3−2
= k√3
- k√2
= k√3−2
k2 = √2
k = 2√2
= √2
Vraag 46 Verslag
Solve for the equation √x - √(x−2) - 1 = 0
Antwoorddetails
To solve this equation, we can start by simplifying the expression inside the square root symbol by taking the common denominator. √x/(x-2) - √(x-2)/(x-2) - 1 = 0 We can simplify this further by combining the two terms inside the square root, which have a common denominator. [√x - √(x-2)]/(x-2) - 1 = 0 Now we can take the common denominator of the two terms inside the parenthesis and simplify. [√x - √(x-2) - (x-2)]/(x-2) = 0 Simplifying the numerator further, [√x - √(x-2) - x + 2]/(x-2) = 0 [√x - x + 2 - √(x-2)]/(x-2) = 0 [√x - x + 2] = √(x-2) Squaring both sides of the equation, (√x - x + 2)² = x - 2 Expanding and simplifying, x² - 2x(√x + 1) + 3 = 0 We can now use the quadratic formula to solve for x: x = [2(√x + 1) ± √(4x - 8)]/2 x = (√x + 1) ± √(x - 2) However, we need to make sure that the solution we get satisfies the original equation. We can check by substituting the value of x back into the original equation. After testing each option, we find that the only solution that satisfies the original equation is x = 9/4.
Vraag 47 Verslag
A bag contains 16 red balls and 20 blue balls only. How many white balls must be added to the bag so that the probability of randomly picking a red ball is equal to 25
Antwoorddetails
Number of red balls = 16,
Number of blue balls = 20
Let x represent the No of white balls to be added
∴ Total number of balls = 36 + x
2(36 + x) = 80
= 2x + 80 - 72
= 8
x = 82
= 4
Vraag 48 Verslag
Find the positive value of x if the standard deviation of the numbers 1, x + 1 is 6
Antwoorddetails
mean (x) = 1+x+1+2x+13
= 3x+33
= 1 + x
X(X−X)(X−X)21−xx2x+1002x+1xx22x2
S.D = √∑(x−7)2∑f
= √(6)2
= 2x23
= 2x2
= 18
x2 = 9
∴ x = ±
√9
= ±
3
Wilt u doorgaan met deze actie?