Laden....
|
Druk & Houd Vast om te Verslepen |
|||
|
Klik hier om te sluiten |
|||
Vraag 1 Verslag
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Antwoorddetails
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Vraag 2 Verslag
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Antwoorddetails
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Vraag 3 Verslag
In Sunlight, a blue flower looks blue because we see the flower by the light it
Antwoorddetails
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Vraag 4 Verslag
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Antwoorddetails
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Vraag 5 Verslag
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Antwoorddetails
Latent heat or specific latent heat = L
| Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Vraag 6 Verslag
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Antwoorddetails
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
| P1 V1 T1 | = | P2 V2 T1 |
| V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Vraag 7 Verslag
In semi-conductor, the carriers of current at room temperature are
Antwoorddetails
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Vraag 8 Verslag
The momentum of a car moving at a constant speed in a circular track
Antwoorddetails
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Vraag 9 Verslag
In the molecular explanation, heat is transferred by the
Antwoorddetails
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Vraag 10 Verslag
When two objects A and B are supplied with the same quantity of heat, the temperature change in A is obtained to be twice that of B. The mass of P is half that of Q. The ratio of the specific heat capacity of A to B is
Antwoorddetails
θA = 2θB ,
| mA | = | 12 | mB |
H = MCθ
mA
cA
θA
= mB
cB
θB
( 1/2 mB
)CA
(2θB
) = mB
cB
θB
| CA CB | = | 11 |
⇒ 1 : 1
Vraag 11 Verslag
Neutrons were discovered by
Antwoorddetails
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Vraag 12 Verslag
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Antwoorddetails
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Vraag 13 Verslag
Any line or section taken through an advancing wave in which all the particles are in the same phase is called the
Antwoorddetails
The answer is: wave front. A wave front is any imaginary line or surface that connects all points of a wave that are in the same phase, meaning they are at the same point in their cycle. In other words, it is a line or surface that separates the points of a wave that are in-phase from those that are out-of-phase. For example, consider the ripples on the surface of a pond when a stone is thrown in. The wave fronts are the concentric circles that emanate from the point where the stone entered the water. All points along a given circle are in-phase, meaning the water molecules at those points are at the same point in their oscillation cycle. In summary, a wave front is a line or surface that separates points in a wave that are in-phase from those that are out-of-phase.
Vraag 14 Verslag
Gases conduct electricity under
Antwoorddetails
Gases conduct electricity under low pressure and high voltage
Vraag 15 Verslag
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Antwoorddetails
P = 0.45cm, L = 60cm, Eff = 75/π%
| VR | (Screw | system) | = | 2πrP | = | 2πLP |
| M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Vraag 16 Verslag
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Antwoorddetails
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Vraag 17 Verslag
The distance between an object and its real image in a convex lens is 40cm. If the magnification of the image is 3, calculate the focal length of the lens
Antwoorddetails
u + v = 40
vu = 3
v = 3u
u + 3u = 40
4u = 40
u = 10cm
v = 3u = 30cm
f = uvu+v=10(30)10+30=30040
= 7.5 cm
Vraag 18 Verslag
When water is boiling, it
Antwoorddetails
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Vraag 19 Verslag
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Antwoorddetails
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Vraag 20 Verslag
The earth's gravitational field intensity at its surface is about
(G = 6.7 × 10−11 Nm2 /kg2 , mass of the earth is 6 × 1024 kg, radius of the earth is 6.4 × 106 m, g on the earth = 9.8m/s2 )
Antwoorddetails
The earth's gravitational field intensity at its surface can be calculated using the formula: g = G * M / r^2 where G is the gravitational constant, M is the mass of the earth, r is the radius of the earth, and g is the gravitational field intensity at the surface of the earth. Substituting the given values, we get: g = (6.7 × 10^-11 Nm^2/kg^2) * (6 × 10^24 kg) / (6.4 × 10^6 m)^2 g = 9.8 N/kg (approx.) Therefore, the answer is 9.8N/kg.
Vraag 21 Verslag
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Antwoorddetails
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Vraag 22 Verslag
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Antwoorddetails
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Vraag 23 Verslag
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Antwoorddetails
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Vraag 24 Verslag
When the temperature of a liquid is increased, its surface tension
Antwoorddetails
Surface tension or elasticity of a fluid decreases with increased in temperature
Vraag 25 Verslag
Which of these is observed when air is pumped out of a discharge tube without lowering its pressure
Antwoorddetails
Conduction takes places in gases when air is pumped out of a discharged tube under reduced pressure.
Vraag 26 Verslag
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Antwoorddetails
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Vraag 27 Verslag
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Antwoorddetails
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Vraag 28 Verslag
In the molecular explanation of conduction, heat is transferred by the
Antwoorddetails
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Vraag 29 Verslag
Which of the following readings cannot be determined with a meter rule?
Antwoorddetails
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Vraag 30 Verslag
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Antwoorddetails
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Vraag 31 Verslag
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Antwoorddetails
all the parallel forces must be equal in magnitude and direction
Vraag 32 Verslag
The volume of a stone having an irregular shape can be determined using?
Antwoorddetails
The volume of a stone with an irregular shape can be determined using a measuring cylinder. A measuring cylinder is a glass or plastic container with a narrow cylindrical shape and markings on the side to indicate the volume it contains. To determine the volume of an irregularly shaped stone, you would fill the measuring cylinder with water, carefully lower the stone into the water, and note the increase in the volume of the water. The difference in the volume of the water before and after the stone was added is equal to the volume of the stone. The meter rule, vernier calliper, and micrometer screw gauge are all measuring instruments, but they are not designed to measure the volume of irregularly shaped objects. The meter rule is a measuring tool used for measuring length. The vernier calliper is used for measuring the diameter of objects, and the micrometer screw gauge is used for precise measurements of small distances.
Vraag 33 Verslag
The value of T in the figure above is
Antwoorddetails
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Vraag 34 Verslag
An alternating current can induce voltage because it has
Antwoorddetails
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Vraag 35 Verslag
"Sum of all forces acting on a body is zero." This condition represents equilibrium'
Antwoorddetails
First condition
Vraag 36 Verslag
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Antwoorddetails
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Vraag 37 Verslag
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Antwoorddetails
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
| using | α | = | l2 - l1 l1 ΔT |
| 15(10) | = | l2 - l1 2.5(5) |
| l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Vraag 38 Verslag
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Antwoorddetails
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Vraag 39 Verslag
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Antwoorddetails
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Vraag 40 Verslag
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Antwoorddetails
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Wilt u doorgaan met deze actie?