Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
The ratio of the length of two similar rectangular blocks is 2 : 3. If the volume of the larger block is 351cm3, then the volume of the other block is
Antwoorddetails
Let x represent total vol. 2 : 3 = 2 + 3 = 5
35
x = 351
x = 351×53
= 585
Volume of smaller block = 23
x 585
= 234.00
Vraag 2 Verslag
Arrange the following numbers in ascending order of magnitude 67
, 1315
, 0.8650
Antwoorddetails
67
, 1315
, 0.8650
In ascending order, we have 0.8571, 0.8650, 0.8666
i.e. 67
< 0.8650 < 1315
Vraag 3 Verslag
The factors of 9 - (x2 - 3x - 1)2 are
Antwoorddetails
9 - (x2 - 3x - 1)2 = [3 - (x2 - 3x - 1)] [3 + (x2 - 3x - 1)]
= (3 - x2 + 3x + 1)(3 + x2 - 3x - 1)
= (4 + 3x - x2)(x2 - 3x + 2)
= (4 - x)(1 + x)(x - 1)(x - 2)
= -(x - 4)(x + 1) (x - 1)(x - 2)
Vraag 4 Verslag
(√2+4√2 ) (√3+√2 ) (√3+√2 ) is equal to
Antwoorddetails
(√2+4√2
) (√3+√2
) (√3+√2
)
(√3+√2
+ (√3+√2
) = 3 + (√6−√6
) - 2
= 1
Vraag 5 Verslag
If cos θ = √32 and θ is less than 90o. Calculate cos90−θsin2θ
Antwoorddetails
cos90−θsin2θ
= tanθsin2θ
Sin2θ
=14
cos(90−θ)sin2θ
= 1√3
= 4√3
Vraag 6 Verslag
If the hypotenuse of right angled isosceles triangle is 2, what is the length of each of the other sides?
Antwoorddetails
45o = x2
, Since 45o = 1√2
x = 2 x 1√2
= 2√22
= √2
Vraag 7 Verslag
2212 % of the Nigerian Naira is equal to 17110 % of a foreign currency M. What is the conversion rate of the M to the Naira?
Antwoorddetails
N = 2212
%, M = 17110
%
M = 17110
%, N = 452
452
x 10171
= 225171
= 1 54171
= 1 1857
Vraag 8 Verslag
If f(x - 2) = 4x2 + x + 7, find f(1)
Antwoorddetails
f(x - 2) = 4x2 + x + 7
x - 2 = 1, x = 3
f(x - 2) = f(1)
= 4(3)2 + 3 + 7
= 36 + 10
= 46
Vraag 9 Verslag
Antwoorddetails
Simple Space: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 = 10)
Prime: (2, 3, 5, 7)
multiples of 3: (3, 6, 9)
Prime or multiples of 3: (2, 3, 5, 6, 7, 9 = 6)
Probability = 610
= 35
Vraag 10 Verslag
Find x if log9x = 1.5
Vraag 11 Verslag
The bearing of a bird on a tree from a hunter on the ground is ₦72oE. What is the bearing of the hunter from the birds?
Antwoorddetails
Bearing of Hunter from Bird is
180 + 27 = 207o
Note that bearing is always taken from the north
207o = S 27o W
Vraag 12 Verslag
In △
XYZ, XY = 13cm, YZ = 9cm, XZ = 11cm and XYZ = θ
. Find cosθ
o
Antwoorddetails
cosθ
= 132+92−1122(13)(9)
= 169+81−2126×9
cosθ
= 12926×9
= 4378
Vraag 13 Verslag
PRSQ is a trapezium of area 14cm2 in which PQ||RS. If PQ = 4cm and SR = 3cm, Find the area of SQR in cm2
Antwoorddetails
Area of trapezium = 14cm2
Area of trapezium = 12
(a + b)h
14 = 12
(4 + 3)h
14 = 72
h
h = 14×27
= 4
Area of SQR = 12
(3 x 4)
= 122
= 6.0
Vraag 14 Verslag
Solve the following equation 22r−1 - 53 = 1r+2
Antwoorddetails
22r−1
- 53
= 1r+2
22r−1
- 1r+2
= 53
2r+4−2r+12r−1(r+2)
= 53
5(2r+1)(r+2)
= 53
5(2r - 1)(r + 2) = 15
(10r - 5)(r + 2) = 15
10r2 + 20r - 5r - 10 = 15
10r2 + 15r = 25
10r2 + 15r - 25 = 0
2r2 + 3r - 5 = 0
(2r2 + 5r)(2r + 5) = r(2r + 5) - 1(2r + 5)
(r - 1)(2r + 5) = 0
r = 1 or −52
Vraag 15 Verslag
Solve for (x, y) in the equation 2x + y = 4: x^2 + xy = -12
Antwoorddetails
2x + y = 4......(i)
x^2 + xy = -12........(ii)
from eqn (i), y = 4 - 2x
= x2 + x(4 - 2x)
= -12
x2 + 4x - 2x2 = -12
4x - x2 = -12
x2 - 4x - 12 = 0
(x - 6)(x + 2) = 0
sub. for x = 6, in eqn (i) y = -8, 8
=(6,-8); (-2, 8)
Vraag 16 Verslag
In △
XYZ, XKZ = 90O, XK = 15cm, XY = 35cm and YK = 8cm. Find the area of △
XYZ
Antwoorddetails
By Pythagoras, KZ2 = 252 - 52
KZ2 = (25 + 15)(25 - 15) = 400
KZ = √400 = 20
area of XYZ = 12×28×15
= 210 sq. cm
Vraag 17 Verslag
In the figure, GHIJKLMN is a cube of side a. Find the length of HN.
Antwoorddetails
HJ2 = a2 + a2 = 2a2
HJ = √2a2=a√2
HN2 = a2 + (a√2 )2 = a2 + 2a2 = 3a2
HN = √3a2
= a√3 cm
Vraag 18 Verslag
In a restaurant, the cost of providing a particular type of food is partly constant and partially inversely proportional to the number of people. If cost per head for 100 people is 30k and the cost for 40 people is 60k, Find the cost for 50 people?
Antwoorddetails
C = a + k
1N
= c
= aN+kN
CN = aN + K
30(100) = a(100) + k
3000 = 100a + k.......(i)
60(40) = a(40) + k
2400 = 40a + k.......(ii)
eqn (i) - eqn (ii)
600 = 60a
a = 10
subt. for a in eqn (i) 3000 = 100(10) + K
3000 - 1000 = k
k = 2000
CN = 10N + 2000. when N = 50,
50C = 10(50) + 2000
50C = 500 + 2000
C = 250050
= 50k
Vraag 19 Verslag
Solve the simultaneous equations 2x - 3y + 10 = 10x - 6y = 5
Antwoorddetails
2x - 3y = -10; 10x - 6y = -5
2x - 3y = -10 x 2
10x - 6y = 5
4x - 6y = -20 .......(i)
10x - 6y = 5.......(ii)
eqn(ii) - eqn(1)
6x = 15
x = 156
= 52
x = 212
Sub. for x in equ.(ii) 10(52
) - 6y = 5
y = 312
Vraag 20 Verslag
If two fair coins are tossed, what is the probability of getting at least one head?
Antwoorddetails
Prob. of getting at least one head
Prob. of getting one head + prob. of getting 2 heads
= 14
+ 24
= 34
Vraag 21 Verslag
A bag contains 4 white balls and 6 red balls. Two balls are taken from the bag without replacement. What is the probability that they are both red?
Antwoorddetails
P(R1) = 610
= 23
P(R1 n R11) = P(both red)
35
x 59
= 13
Vraag 22 Verslag
If a{x+1x−2−x−1x+2 } = 6x. Find a in its simplest form
Antwoorddetails
a{x+1x−2−x−1x+2
} = a{(x+1)(x+2)−(x−1)(x−2)(x−2)(x+2)
}
= 6
6xx2−4
= 6x
a = x2 - 4
Vraag 23 Verslag
A solid sphere of radius 4cm has a mass of 64kg. What will be the mass of a shell of the same metal whose internal and external radii are 2cm and 3cm respectively?
Antwoorddetails
1√3(12)2
= 4√3
= √3√3
= 4√3√3
m = 64kg, V = 4πr33
= 4π(4)33
= 256π3
x 10-6m3
density(P) = MassVolume
= 64256π3×10−6
= 64×3×10−6256
= 34×10−6
m = PV = 34π×10−6
x 43
π
[32 - 22] x 10-6
34×10−6
x 43
x 5 x 10-6
= 5kg
Vraag 24 Verslag
In the figure, PQ is the tangent from P to the circle QRS with SR as its diameter. If QRS = θ
∘
and RQP = ϕ
∘
, which of the following relationships between θ
∘
and ϕ
∘
is correct
Antwoorddetails
180 - ϕ ∘ = θ ∘ + ϕ ∘ (Sum of opposite interior angle equal to its exterior angle)
180 = 2ϕ + θ ∘
Vraag 25 Verslag
Find the area of a regular hexagon inscribed in a circle of radius 8cm
Antwoorddetails
Area of a regular hexagon = 8 x 8 x sin 60o
= 32 x √32
=
Area = 16√3
x 6 = 96 √3
cm2
Vraag 26 Verslag
In a class of 120 students, 18 of them scored an A grade in mathematics. If the section representing the A grade students on a pie chart has angle Zo at the centre of the circle, what is Z?
Antwoorddetails
Total students = 120
grade = 18
Zo = 18120
x 3601
= 54o
Vraag 27 Verslag
In the figure, MNQP is a cyclic quadrilateral. MN and Pq are produced to meet at X and NQ and MP are produced to meet at Y. If MNQ = 86∘
and NQP = 122∘
find (x∘
, y∘
)
Antwoorddetails
y∘ = 180∘ - (86∘ + 58∘ )
180 - 144 = 36∘
x∘ = 180 - (94 + 58)
180 -152 = 28
(x∘ , y∘ ) = (28∘ , 36∘ )
Vraag 28 Verslag
Write h in terms of a, b, c, d if a = b(1?ch)a?dh
Antwoorddetails
a = b(1?ch)a?dh
a = b?bch1?dh
= a - adh
= b - bch
a - b = bch + adn
a - b = adh
a - b = h(ad - bc)
h = a?bad?bc
Vraag 29 Verslag
If 32y + 6(3y) = 27. Find y
Antwoorddetails
32y + 6(3y) = 27
This can be rewritten as (3y)2 + 6(3y) = 27
Let 3y = x
x2 + 6x - 27 = 0
(x + 9)(x - 3) = 0
when x - 3 = 0, x = 3
sub. for x in 3y = x
3y = 3
log33 = y
y = 1
Vraag 30 Verslag
Without using table, calculate the value of 1 + sec2 30o
Antwoorddetails
1 + sec2 30o = sec 30o
= 2√3
(2)23
= 43
1 + sec2 30o = sec 30o
= 1 + 4√3
= 213
Vraag 31 Verslag
Find the values of p for which the equation x2 - (p - 2)x + 2p + 1 = 0
Antwoorddetails
Equal roots implies b2 - 4ac = 0
a = 1b = - (p - 2), c = 2p + 1
[-(p - 2)]2 - 4 x 1 x (2p + 1) = 0
p2 - 4p + 4 - 4(2p + 1) = 0
p2 - 4p = 4 - 8p - 4 = 0
p2 - 12p = 0
p(p - 12) = 0
p = 0 or 12
Vraag 32 Verslag
List all integers satisfying the inequality -2 ≤
2 x -6 < 4
Antwoorddetails
-2 ≤
2x - 6 < 4 = 2x - 6 < 4
= 2x < 10
= x < 5
2x ≥
-2 + 6 ≥
= x ≥
2
∴ 2 ≤
x < 5 [2, 3, 4]
Vraag 33 Verslag
If three numbers P, Q, R are in ratio 6 : 4 : 5, find the value of 3p−q4q+r
Antwoorddetails
P : Q : r = 6 : 4 : 5
5 = 6 + 4 + 5
= 15
P = 615
, q = 415
, r = 515
= 13
To find 3p−q4q+r
3p - q = 3 x 615
- 415
1815
- 415
= 1415
∴ 4q + r = 4 x 415
+ 515
1615
= 1615
+ 515
= 2115
1415
x 1521
= 1421
= 23
Vraag 34 Verslag
Find correct to two decimals places 100 + 1100 + 31000 + 2710000
Antwoorddetails
100 + 1100
+ 31000
+ 2710000
1000,000+100+30+2710000
= 1,000.15710000
= 100.02
Vraag 35 Verslag
Two points X and Y both on latitude 60oS have longitude 147oE and 153oW respectively. Find to the nearest kilometer the distance between X and Y measured along the parallel of latitude (Take 2π R = 4 x 104km, where R is the radius of the earth)
Antwoorddetails
Length of an area = θ360
× 2π
r
Longitude difference = 147 + 153 = 300oN
distance between xy = θ360
× 2π
R cos60o
= 300360
× 4 × 104 × 12
= 1.667 × 104km (1667 km)
Vraag 36 Verslag
John gives one-third of his money to Janet who has ₦105.00. He then finds that his money is reduced to one-fourth of what Janet now has. Find how much money john has at first
Antwoorddetails
Let x be John's money, Janet already had ₦105, 13
of x was given to Janet
Janet now has 132
x + 105 = x+3153
John's money left = 23
x
= 14(x+315)3
= 23
24x = 3x + 945
∴ x = 45
Vraag 37 Verslag
Find the missing value in the table below
x |
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y=4?3x?x^3
|
80 | 18 | 8 | 4 | 0 | -10 | -32 |
Antwoorddetails
When x = -3, y = 4 - 3(3) - (-3)3
= 4 + 9 + 27
= 13 + 27
= 40
Vraag 38 Verslag
The number of goals scored by a football team in 20 matches is shown below:
No. of goals012345No. of matches357310
What are the values of the mean and the mode respectively?
Antwoorddetails
xffx03015527143412414500
∑f
= 20
∑fx
= 35
Mean = ∑fx∑f
= 3520
= 74
= 1.75
Mode = 2
= 1.75, 2
Vraag 39 Verslag
If the quadratic function 3x2 - 7x + R is a perfect square, find R
Antwoorddetails
3x2 - 7x + R. Computing the square, we have
x2 - 73
= -R3
(x1?76
)2 = -R3
+ 4936
?R3
+ 4936
= 0
R = 4936
x 31
= 4912
Vraag 40 Verslag
In the figure, the area of the shaded segment is
Antwoorddetails
Area of sector = 120360×π×(3)2=3π
Area of triangle = 12×3×3×sin120o
= 92×√32=9√34
Area of shaded portion = 3π−9√34
= 3 π−3√34
Vraag 42 Verslag
Which of these angles can be constructed using ruler and a pair of compasses only?
Antwoorddetails
Vraag 43 Verslag
a sum of money was invested at 8% per annum simple interest. If after 4 years the money amounts to N330.00. Find the amount originally invested
Antwoorddetails
S.I = PTR100
T = 4yrs, R = 8%, a = N330.00
330 - P = PTR100
, A = P + I
i.e. A = P + PTR100
330 = P + P(4)(8)100
33000 = 32P + 100p
132P = 33000
P = N250.00
Vraag 44 Verslag
In the equation below, Solve for x if all the numbers are in base 2: 11x = 1000x+101
Antwoorddetails
11x
= 1000x+101
= 11(x + 101)
1000x = 11x + 1111
1000x - 11x = 1111
101x = 1111
x = 1111101
x = 11
Vraag 45 Verslag
If ex = 1 + x2 + x21.2 + x31.2.3 + .....Find 1ex
Antwoorddetails
ex = 1 + x2 + x21.2 + x31.2.3 + x41.23.4
Vraag 46 Verslag
Factorize abx2 + 8y - 4bx - 2axy
Antwoorddetails
abx2 + 8y - 4bx - 2axy = (abx2 - 4bx) + (8y - 2axy)
= bx(ax - 4) 2y(ax - 4) 2y(ax - 4)
= (bx - 2y)(ax - 4)
Vraag 47 Verslag
At what real value of x do the curves whose equations are y = x3 + x and y = x2 + 1 intersect?
Antwoorddetails
y = x3 + x and y = x2 + 1
x−2−1012Y=x3+x−10−20210y=x2+152125
The curves intersect at x = 1
Wilt u doorgaan met deze actie?