Laden....
Druk & Houd Vast om te Verslepen |
|||
Klik hier om te sluiten |
Vraag 1 Verslag
a boy looks through a window of a building and sees a mango fruit on the ground 50m away from the foot of the building. If the window is 9m from the ground, calculate, correct to the nearest degree, the angle of depression of the mango from the window
Antwoorddetails
Vraag 2 Verslag
G varies directly as the square of H, If G is 4 when H is 3, find H when G = 100
Antwoorddetails
In this problem, we are given that G varies directly as the square of H. This means that if H is multiplied by some factor, then G will be multiplied by the square of that factor. Mathematically, we can write this as: G ∝ H^2 where the symbol "∝" means "varies directly as". We are also given that G is 4 when H is 3. Using this information, we can write: 4 ∝ 3^2 To find H when G = 100, we can use the same relationship: G ∝ H^2 If we let the constant of proportionality be k, we can write: G = kH^2 To solve for k, we can use the initial condition where G is 4 when H is 3: 4 = k(3^2) Simplifying, we get: k = 4/9 Now we can use this value of k to find H when G is 100: 100 = (4/9)H^2 Multiplying both sides by 9/4, we get: 225 = H^2 Taking the square root of both sides, we get: H = 15 Therefore, the correct answer is (a) 15. In summary, we used the direct variation relationship between G and H^2 to find the constant of proportionality, and then used that constant and the given value of G to solve for H.
Vraag 3 Verslag
In the diagram /Pq//TS//TU, reflex angle QPS = 245o angle PST = 115o, , STU = 65o and < RPS = x. Find the value of x
Antwoorddetails
Vraag 4 Verslag
Using the cumulative frequency curve, estimate the median of the data represented on the graph.
Antwoorddetails
Vraag 5 Verslag
A rectangular garden measures 18.6m by 12.5m. Calculate, correct to three significant figures, the area of the garden
Antwoorddetails
The area of a rectangle is given by multiplying the length by the width. Therefore, the area of the garden is: Area = length × width Area = 18.6m × 12.5m Area = 232.5m2 Rounding to three significant figures gives 233m2. Therefore, the answer is (d) 233m2.
Vraag 6 Verslag
If N112.00 exchanges for D14.95, calculate the value of D1.00 in naira
Antwoorddetails
To calculate the value of D1.00 in naira, we can use the given exchange rate of N112.00 to D14.95. We can find the value of 1 D in Naira by dividing N112.00 by the equivalent value of D14.95. So, 1 D = N112.00/D14.95 To simplify this, we can first convert D14.95 to its decimal equivalent by dividing by 100: D14.95 = 14.95/100 = 0.1495 Now we can substitute this value into the equation: 1 D = N112.00/0.1495 Simplifying this expression, we get: 1 D = N748.16 Therefore, the value of D1.00 in Naira is N748.16. Answer: 7.49.
Vraag 7 Verslag
From the equation whose roots are x = \(\frac{1}{2}\) and -\(\frac{2}{3}\)
Antwoorddetails
When a quadratic equation has roots at x = a and x = b, it can be written in factored form as (x-a)(x-b) = 0. Therefore, from the given roots, the factors are (x - \(\frac{1}{2}\)) and (x + \(\frac{2}{3}\)). To get the quadratic equation, we can expand the factors by multiplying them together, which gives us: (x - \(\frac{1}{2}\))(x + \(\frac{2}{3}\)) = x2 - \(\frac{1}{2}\)x + \(\frac{2}{3}\)x - \(\frac{1}{2}\)\(\frac{2}{3}\) = x2 + \(\frac{1}{6}\)x - \(\frac{1}{3}\) Therefore, the correct option is 6x2 + x - 2 = 0.
Vraag 8 Verslag
In the diagram, PO and OR are radii, |PQ| = |QR| and reflex < PQR is 240o. Calculate the value x
Antwoorddetails
In the given diagram, we have a circle with center O and radii OP and OR. The reflex angle PQR is 240° and |PQ| = |QR|. We need to find the value of x. Since |PQ| = |QR|, we know that triangle PQR is an isosceles triangle. Therefore, the angles opposite to PQ and QR are equal. Let's denote the angle PQR by y. Then we have: 2y + 60° = 360° (sum of angles in a triangle) 2y = 300° y = 150° Therefore, each of the angles opposite to PQ and QR is equal to (180° - 150°)/2 = 15°. Now, consider the triangle OQP. We know that the sum of angles in a triangle is 180°. Therefore: ∠OQP + ∠QOP + ∠OPQ = 180° Since OP and OQ are radii, ∠QOP = ∠OPQ. Let's denote this angle by z. Then we have: z + z + 15° = 180° 2z = 165° z = 82.5° Finally, consider the triangle OXR. We know that the sum of angles in a triangle is 180°. Therefore: ∠OXR + ∠ORX + ∠ROX = 180° Since OR and OX are radii, ∠ORX = ∠ROX. Let's denote this angle by x. Then we have: x + x + 60° = 180° 2x = 120° x = 60° Therefore, the value of x is 60°. Answer: 60°.
Vraag 9 Verslag
The graph represents the relation y = xo2 - 3x - 3. Find the value of x for which x2 - 3x = 7
Antwoorddetails
Vraag 10 Verslag
Solve for x in the equation; \(\frac{3}{5}\)(2x - 1) = \(\frac{1}{4}\)(5x - 3)
Antwoorddetails
Vraag 11 Verslag
Simplify \(\frac{m}{n} + \frac{(m - 1)}{5n} = \frac{(m - 2)}{10n}\) where n \(\neq\) 0
Antwoorddetails
Vraag 12 Verslag
The venn diagram shows the number of students in a class who like reading(R), dancing(D) and swimming(S). How many students like dancing and swimming?
Antwoorddetails
Vraag 14 Verslag
A cylindrical container has a base radius of 14cm and height 18cm. How many litres of liquid can it hold? correct to the nearest litre [Take \(\pi = \frac{22}{7}\)]
Antwoorddetails
The volume of a cylinder can be calculated using the formula: V = πr2h, where r is the radius of the base and h is the height of the cylinder. Substituting the given values, we have: V = π(14)2(18) V = 11088 cm3 To convert cm3 to litres, we divide by 1000: V = 11088/1000 V = 11.088 litres Rounding to the nearest litre, we get: V ≈ 11 litres Therefore, the answer is 11.
Vraag 15 Verslag
John pours 96 litres of red oil into a rectangular container with length 220cm and breadth 40cm. Calculate, correct to the nearest cm, the height of the oil in the container
Antwoorddetails
To solve this problem, we need to use the formula for the volume of a rectangular container: Volume = Length x Breadth x Height We are given the length and breadth of the container, as well as the volume of the oil. We need to find the height of the oil. First, we need to convert the volume of the oil from litres to cubic centimeters, since the dimensions of the container are given in centimeters. 1 litre = 1000 cubic centimeters Therefore, 96 litres = 96 x 1000 = 96,000 cubic centimeters Now, we can plug in the values we have into the formula for the volume of the container: Volume = Length x Breadth x Height 96,000 = 220 x 40 x Height Simplifying, we get: Height = 96,000 / (220 x 40) Height = 2.18 To round off to the nearest centimeter, we need to look at the first decimal place. If the value in the first decimal place is 5 or more, we round up. If it is less than 5, we round down. In this case, the value in the first decimal place is 1, which is less than 5. Therefore, we round down to 2. So, the height of the oil in the container is approximately 2cm. Therefore, the correct answer is (a) 11cm.
Vraag 16 Verslag
What is the value of 3 in the number 42.7531?
Antwoorddetails
The digit 3 in the number 42.7531 is in the thousandth place (the digit after the decimal point and three places to the right of it). Therefore, its value is \(\frac{3}{1000}\).
Vraag 17 Verslag
The height of a cylinder is equal to its radius. If the volume is 0.216 \(\pi\) m\(^3\). Calculate the radius.
Antwoorddetails
Let's denote the radius of the cylinder as r and its height as h. We are given that the height of the cylinder is equal to its radius, so h = r. We also know the volume of the cylinder, which is given by: V = \(\pi\)r\(^2\)h Substituting h = r, we get: V = \(\pi\)r\(^2\)r = \(\pi\)r\(^3\) We are given that the volume of the cylinder is 0.216 \(\pi\) m\(^3\). So, we can solve for r as follows: 0.216 \(\pi\) = \(\pi\)r\(^3\) r\(^3\) = 0.216 Taking the cube root of both sides, we get: r = 0.6 Therefore, the radius of the cylinder is 0.6 meters. So, the answer is 0.60m.
Vraag 18 Verslag
Simplify \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\)
Antwoorddetails
Using the property that \(\log_{a}b = \frac{\log{b}}{\log{a}}\), we can simplify the given expression as follows: \[\frac{\log \sqrt{27}}{\log \sqrt{81}} = \frac{\log 27^{\frac{1}{2}}}{\log 81^{\frac{1}{2}}} = \frac{\frac{1}{2}\log 27}{\frac{1}{2}\log 81} = \frac{\log 3^3}{\log 3^4} = \frac{3\log 3}{4\log 3} = \frac{3}{4}\] Therefore, the simplified form of \(\frac{\log \sqrt{27}}{\log \sqrt{81}}\) is \(\frac{3}{4}\), and the correct option is (D).
Vraag 19 Verslag
from the diagram, Which of the following statements are true? i. m = q ii. n = q iii. n + p = 180o iv. p + m = 180o
Antwoorddetails
In the given diagram, we can see that lines n and q are parallel and m is a transversal cutting them. Therefore, angles n and q are alternate interior angles and are equal, i.e., statement i is true. Also, we can see that lines n and p are parallel and q is a transversal cutting them. Therefore, angles n and p are corresponding angles and are equal. As the sum of the corresponding angles is equal to 180 degrees, we have n + p = 180 degrees, i.e., statement iii is also true. However, we cannot determine whether statement ii and iv are true or not based on the given information and the diagram. Therefore, the correct answer is (a) i and iii.
Vraag 20 Verslag
If \(\sqrt{72} + \sqrt{32} - 3 \sqrt{18} = x \sqrt{8}\), Find the value of x
Antwoorddetails
Vraag 21 Verslag
The histogram shows the age distribution of members of a club. What is their modal age?
Antwoorddetails
Vraag 22 Verslag
Given that n(p) = 19, m(P \(\cup\) Q) = 38 and n(P \(\cap\) Q) = 7, Find n(C)
Antwoorddetails
Vraag 23 Verslag
A regular polygon of n sides has each exterior angle to 45o. Find the value of n
Antwoorddetails
In a regular polygon with n sides, each exterior angle measures 360/n degrees. We are given that in this polygon, each exterior angle is 45 degrees. Therefore, we can set up an equation: 360/n = 45 To solve for n, we can cross-multiply and simplify: 360 = 45n n = 360/45 n = 8 Therefore, the regular polygon in question has 8 sides. Answer: 8.
Vraag 24 Verslag
Factorize the expression: am + bn - an - bm
Antwoorddetails
We can begin by grouping the first two terms and the last two terms together: am + bn = a(m) + b(n) = (a+b)n - bn an + bm = a(n) + b(m) = (a+b)m - am Now, we can substitute these expressions back into the original equation: am + bn - an - bm = [(a+b)n - bn] - [(a+b)m - am] We can simplify this expression by combining like terms: am + bn - an - bm = (a+b)n - bn - (a+b)m + am am + bn - an - bm = (a+b)n - (a+b)m + am - bn Finally, we can factor out the common factor of (a+b) from the first two terms and the common factor of (-1) from the last two terms: am + bn - an - bm = (a+b)(n-m) - (b-a)(n-m) Therefore, the answer is (a+b)(n-m) - (b-a)(n-m), which can be further simplified to (a-b)(m-n). Thus, the correct option is (a - b)(m - n).
Vraag 26 Verslag
in a quiz competition, a student answers n questions correctly and was given D(n + 50) for each question correctly answered. If he gets D600.00 altogether, how many questions did he answer correctly?
Antwoorddetails
Vraag 27 Verslag
The perimeter of a sector of a circle of radius 4cm is (\(\pi + 8\))cm. Calculate the anle of the sector
Antwoorddetails
Vraag 29 Verslag
Esther was facing S 20° W. She turned 90° in the clock wise direction. What direction is she facing?
Antwoorddetails
If Esther was initially facing S 20° W and then turned 90° clockwise, she would end up facing in a new direction. To determine the new direction, we can add 90° to her initial direction. When we add 90° to S 20° W, we rotate the direction clockwise by 90°, which means the new direction will be to the right of the initial direction. To find the new direction, we need to subtract the initial angle from 90°: 90° - 20° = 70° Therefore, Esther is facing in the direction of N 70° W after turning 90° clockwise from her initial direction of S 20° W.
Vraag 30 Verslag
Find the smaller value of x that satisfies the equation x2 + 7x + 10 = 0
Antwoorddetails
We are given a quadratic equation x2 + 7x + 10 = 0 and we need to find the smaller value of x that satisfies the equation. To solve the equation, we can factorize it by finding two numbers whose product is 10 and whose sum is 7. We can see that the two numbers are 2 and 5, since 2 × 5 = 10 and 2 + 5 = 7. So, we can write the equation as (x + 2)(x + 5) = 0. For this equation to be true, either (x + 2) = 0 or (x + 5) = 0. Therefore, we get x = -2 or x = -5. Since we are asked to find the smaller value of x, we choose x = -5 as the answer. Hence, the smaller value of x that satisfies the equation x2 + 7x + 10 = 0 is -5.
Vraag 31 Verslag
The length of a piece of stick is 1.75m. A girl measured it as 1.80m. Find the percentage error
Antwoorddetails
The actual length of the stick is 1.75m and the measured length is 1.80m. The error is the difference between the actual and measured length: 1.80m - 1.75m = 0.05m To find the percentage error, we divide the error by the actual length and multiply by 100%: \frac{0.05}{1.75} \times 100\% \approx 2.857\% \approx \frac{20}{7}\% Therefore, the percentage error is approximately \frac{20}{7}\%.
Vraag 32 Verslag
One of the factors of (mn - nq - n2 + mq) is (m - n). The other factor is?
Antwoorddetails
Vraag 33 Verslag
In the diagram /Pq//TS//TU, reflex angle QPS = 245o angle PST = 115o, , STU = 65o and < RPS = x. Find the value of x
Antwoorddetails
Vraag 34 Verslag
If 27x = 9y. Find the value of \(\frac{x}{y}\)
Antwoorddetails
If we can find the value of x and y, then we can calculate x/y by dividing x by y. Given: 27x = 9y We can rewrite 27 as 33 and 9 as 32 to get: (33)x = (32)y Applying the power of a power rule, we get: 33x = 32y For two exponential expressions to be equal, their bases must be equal. Therefore: 33x = 32y implies 3x = 2y Dividing both sides by y, we get: \(\frac{x}{y} = \frac{2}{3}\) Therefore, the answer is \(\frac{2}{3}\).
Vraag 35 Verslag
In the diagram, /MN/, /OP/, /QOP/ = 125o. What is the size of < MQR?
Vraag 36 Verslag
In the diagram, STUV is a straight line. < TSY = < UXY = 40o and < VUW = 110o. Calculate < TYW
Vraag 37 Verslag
Solve the equation; 3x - 2y = 7, x + 2y = -3
Antwoorddetails
To solve this system of equations, we can use the method of elimination. We will add the two equations together, which will eliminate the y variable: (3x - 2y) + (x + 2y) = 7 + (-3) Simplifying, we get: 4x = 4 Dividing both sides by 4, we get: x = 1 Substituting x = 1 into one of the equations, we get: 1 + 2y = -3 Solving for y, we get: y = -2 Therefore, the solution to the system of equations is x = 1, y = -2. So, the correct option is (a) x = 1, y = -2.
Vraag 38 Verslag
If a number is chosen at random from the set {x: 4 \(\leq x \leq 15\)}. Find the probability that it is a multiple of 3 or a multiple of 4
Vraag 39 Verslag
The graph represents the relation y = x\(^2\) - 3x - 3. What is the equation of the line of symmetry of the graph?
Antwoorddetails
To find the equation of the line of symmetry of the graph, we need to identify the axis of symmetry. The axis of symmetry is a vertical line that passes through the vertex of the parabola. The vertex of the parabola is the point where the parabola changes direction, and it can be found by using the formula: x = -b / (2a) where a and b are the coefficients of the quadratic equation y = ax\(^2\) + bx + c. In the given equation y = x\(^2\) - 3x - 3, a = 1, b = -3, and c = -3. Substituting these values in the formula, we get: x = -(-3) / (2*1) = 3/2 = 1.5 Therefore, the line of symmetry is a vertical line passing through x = 1.5. So, the correct answer is (C) x = 1.5.
Vraag 40 Verslag
John pours 96 litres of red oil into a rectangular container with length 220cm and breadth 40cm. Calculate, correct to the nearest cm, the height of the oil in the container
Antwoorddetails
To calculate the height of the oil in the container, we need to use the formula for the volume of a rectangular prism: Volume = length x breadth x height First, we need to convert the given volume from liters to cubic centimeters, since the dimensions of the container are in centimeters. 96 liters = 96,000 cubic centimeters Next, we can plug in the given values into the formula: 96,000 = 220 x 40 x height Solving for height, we get: height = 96,000 / (220 x 40) height ≈ 11.0 cm (rounded to the nearest cm) Therefore, the height of the oil in the container is approximately 11 cm. Note: When working with volume, it's important to make sure the units are consistent throughout the problem. In this case, we converted liters to cubic centimeters to match the dimensions of the container.
Vraag 41 Verslag
The diagram shows a cyclic quadrilateral PQRS with its diagonals intersecting at K. Which of the following triangles is similar to triangle QKR?
Antwoorddetails
Vraag 42 Verslag
The cross section section of a uniform prism is a right-angled triangle with sides 3cm. 4cm and 5cm. If its length is 10cm. Calculate the total surface area
Antwoorddetails
Vraag 43 Verslag
Which of these angles can be constructed using ruler and a pair of compasses only?
Antwoorddetails
Vraag 44 Verslag
Given that cos xo = \(\frac{1}{r}\), express tan x in terms of r
Antwoorddetails
We know that: cos x = adjacent side/hypotenuse So, if cos x = 1/r, then adjacent side = 1 and hypotenuse = r. Using the Pythagorean theorem, we can find the opposite side: opposite side = √(hypotenuse^2 - adjacent side^2) = √(r^2 - 1) Finally, we can find the value of tan x: tan x = opposite side/adjacent side = √(r^2 - 1)/1 = √(r^2 - 1) Therefore, the answer is (d) \(\sqrt{r^2 - 1}\).
Vraag 45 Verslag
What must be added to (2x - 3y) to get (x - 2y)?
Antwoorddetails
To get from (2x - 3y) to (x - 2y), we need to subtract x from 2x and add 2y to -3y. Therefore, we need to add (x - 2y) - (2x - 3y) to (2x - 3y) to get (x - 2y). Simplifying (x - 2y) - (2x - 3y), we have: (x - 2y) - (2x - 3y) = x - 2y - 2x + 3y = -x + y Therefore, we need to add (-x + y) to (2x - 3y) to get (x - 2y). Simplifying (2x - 3y) + (-x + y), we have: (2x - 3y) + (-x + y) = 2x - 3y - x + y = x - 2y So, we need to add (-x + y) to (2x - 3y) to get (x - 2y). Therefore, the answer is (B) y - x.
Vraag 46 Verslag
The height of a cylinder is equal to its radius. If the volume is 0.216 \(\pi m^3\) Calculate the radius.
Antwoorddetails
Vraag 47 Verslag
What is the value of 3 in the number 42.7531?
Antwoorddetails
The number 42.7531 can be written in expanded form as: 42 + 0.7 + 0.05 + 0.003 + 0.0001 The digit 3 is located in the thousandths place, which represents the decimal value of 0.001. So, the value of 3 in the number 42.7531 is equal to: 3 x 0.001 = 0.003 Therefore, the correct answer is option (A), which is 3 divided by 10000.
Vraag 48 Verslag
The perpendicular bisectors of the sides of an acute-angled triangle are drawn. Which of these statements is correct? They intersect
Antwoorddetails
The perpendicular bisectors of the sides of an acute-angled triangle intersect at a point inside the triangle. This point is called the circumcenter, which is equidistant from the three vertices of the triangle. To see why this is true, consider two sides of the triangle, and let their perpendicular bisectors intersect at a point O. Since O lies on the perpendicular bisector of each of the two sides, it is equidistant from the endpoints of each of those sides. Therefore, O is equidistant from two vertices of the triangle. Similarly, O is equidistant from the third vertex, so it must be the circumcenter of the triangle. Since the triangle is acute-angled, the circumcenter lies inside the triangle.
Vraag 49 Verslag
The histogram shows the age distribution of members of a club. How many members are in the club?
Antwoorddetails
Vraag 50 Verslag
Using ruler and a pair of compasses only,
(a) construct a rhombus PQRS of side 7 cm and < PQR = 60°;
(b) locate point X such that X lies on the locus of points equidistant from PQ and QR and also equidistant from Q and R ;
(c) measure |XR|.
Vraag 51 Verslag
A library received $1,300 grant. It spends 10% of the grant on magazine subscriptions, 35% on new books, 15% to repair damaged books, 30% to buy new furniture and 10% to train library staff.
(a) Represent this information on a pie chart.
(b) Calculate, correct to the nearest whole number, the percentage increase of the amount for buying books over that of new furniture.
Antwoorddetails
None
Vraag 52 Verslag
(a) The total surface area of two spheres are in the ratio 9 : 49. If the radius of the smaller sphere is 12 cm, find, correct to the nearest \(cm^{3}\), the volume of the bigger sphere.
(b) A cyclist starts from a point X and rides 3 km due West to a point Y. At Y, he changes direction and rides 5 km North- West to a point Z.
(i) How far is he from the starting point, correct to the nearest km? ; (ii) Find the bearing of Z from X, to the nearest degree.
None
Antwoorddetails
None
Vraag 53 Verslag
(a)
In the diagram, PQRST is a quadrilateral. PT // QS, < PTQ = 42°, < TSQ = 38° and < QSR = 30°. If < QTS = x and < POT = y, find: (i) x ; (ii) y.
(b)
In the diagram, PQRS is a circle centre O. If POQ = 150°, < QSR = 40° and < SQP = 45°, calculate < RQS.
Antwoorddetails
None
Vraag 54 Verslag
(a) The area of trapezium PQRS is 60\(cm^{2}\). PQ // RS, /PQ/ = 15 cm, /RS/ = 25 cm and < PSR = 60°. Calculate the : (i) perpendicular height of PQRS ; (ii) |PS|.
(b) Ade received \(\frac{3}{5}\) of a sum of money, Nelly \(\frac{1}{3}\) of the remainder while Austin took the rest. If Austin's share is greater than Nelly's share by N3,000, how much did Ade get?
Vraag 55 Verslag
(a) Given that \(\sin x = 0.6, 0° \leq x \leq 90°\), evaluate \(2\cos x + 3\sin x\), leaving your answer in the form \(\frac{m}{n}\), where m and n are integers.
(b)
In the diagram, a semi-circle WXYZ with centre O is inscribed in an isosceles triangle ABC. If /AC/ = /BC/, |OC| = 30 cm and < ACB = 130°, calculate, correct to one decimal place, the (i) radius of the circle ; (ii) area oc the shaded portion. [Take \(\pi = \frac{22}{7}\)].
Antwoorddetails
None
Vraag 56 Verslag
(a) Simplify : \(\frac{\frac{1}{2} of \frac{1}{4} \div \frac{1}{3}}{\frac{1}{6} - \frac{3}{4} + \frac{1}{2}}\).
(b) Given that \(\sqrt{x} = 10^{\bar{1}.6741}\), without using calculators, find the value of x.
Antwoorddetails
None
Vraag 57 Verslag
A sector of a circle with radius 21 cm has an area of 280\(cm^{2}\).
(a) Calculate, correct to 1 decimal place, the perimeter of the sector.
(b) If the sector is bent such that its straight edges coincide to form a cone, calculate, correct to the nearest degree, the vertical angle of the cone. [Take \(\pi = \frac{22}{7}\)].
None
Antwoorddetails
None
Vraag 58 Verslag
The table shows the scores obtained when a fair die was thrown a number of times.
Score | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency | 2 | 5 | x | 11 | 9 | 10 |
If the probability of obtaining a 3 is 0.26, find the (a) median
(b) standard deviation of the distribution.
Vraag 59 Verslag
In a class of 40 students, 18 passed Mathematics, 19 passed Accounts, 16 passed Economics, 5 passed Mathematics and Accounts only, 6 Mathematics only, 9 Accounts only, 2 Accounts and Economics only. If each student offered at least one of the subjects,
(a) how many students failed in all subjects?
(b) find the percentage number that failed in at least one of Economics and Mathematics
(c) calculate the probability that a student picked at random failed in Accounts?
Antwoorddetails
None
Vraag 60 Verslag
(a) Make q the subject of the relation \(t = \sqrt{\frac{pq}{r} - r^{2}q}\).
(b) If \(9^{(1 - x)} = 27^{y}\) and \(x - y = -1\frac{1}{2}\), find the value of x and y.
None
Antwoorddetails
None
Vraag 61 Verslag
(a) Divide \(\frac{x^{2} - 4}{x^{2} + x}\) by \(\frac{x^{2} - 4x + 4}{x + 1}\).
(b) The diagram below shows the graphs of \(y = ax^{2} + bx + c\) and \(y = mx + k\) where a, b, c and m are constants. Use the graph(s) to :
(i) find the roots of the equation \(ax^{2} + bx + c = mx + k\);
(ii) determine the values of a, b and c using the coordinates of points L, M and N and hence write down the equation of the curve;
(iii) determine the line of symmetry of the curve \(y = ax^{2} + bx + c\).
Antwoorddetails
None
Vraag 62 Verslag
(a) P varies directly as Q and inversely as the square of R. If P = 1 when Q = 8 and R = 2, find the value of Q when P = 3 and R = 5.
(b) An aeroplane flies from town A(20°N, 60°E) to town B(20°N, 20°E). (i) if the journey takes 6 hours, calculate, correct to 3 significant figures, the average speed of the aeroplane. (ii) if it then flies due North from town B to town C, 420 km away, calculate correct to the nearest degree, the latitude of town C. [Take radius of the earth = 6400 km and \(\pi\) = 3.142].
Antwoorddetails
None
Wilt u doorgaan met deze actie?