A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Detalhes da Resposta
Pergunta 2 Relatório
The figure above shows the electrolysis of molten sodium chloride. Z is the
Detalhes da Resposta
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Pergunta 3 Relatório
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Detalhes da Resposta
Pergunta 4 Relatório
The conductivity of an acid solution depends on the
Detalhes da Resposta
The conductivity of an acid solution depends on the amount of ions present and their mobilities. When an acid dissolves in water, it forms ions that can carry an electric charge. These ions are what allows the solution to conduct electricity. The more ions there are in the solution, the better it can conduct electricity. However, not all ions have the same mobility or ability to move around in the solution. Ions with a higher mobility can move more easily through the solution, leading to a higher conductivity. Therefore, the conductivity of an acid solution is determined by both the amount of ions present and their mobilities. Other factors such as temperature can also affect conductivity, but the primary factors are the amount and mobility of ions.
Pergunta 5 Relatório
An element used in the production of matches is
Detalhes da Resposta
The element used in the production of matches is sulphur. Matches are small sticks made of wood or cardboard with a chemical mixture at one end. This chemical mixture, called the match head, contains several compounds including sulphur. When the match is struck against a rough surface, the friction generates heat that ignites the sulphur in the match head, causing a flame. This flame then ignites the other compounds in the match head, which in turn ignites the wood or cardboard stick. Sulphur is an important component of the match head because it is highly flammable and burns easily. It also helps to ignite the other compounds in the match head. However, sulphur by itself is not a good fuel, which means that it cannot sustain a flame on its own. Therefore, it needs other combustible materials, such as potassium chlorate or phosphorus, to make the match head burn. Overall, sulphur plays a crucial role in the chemistry of matches and allows us to easily start fires for various purposes.
Pergunta 6 Relatório
An aqueous solution of a metal salt, M. gives a white precipitate with NaOH which dissolves in excess NaOH. With aqueous ammonia, the solution of M also gives a white precipitate which dissolves in excess ammonia Therefore the cation in M is
Detalhes da Resposta
Pergunta 7 Relatório
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Detalhes da Resposta
Pergunta 8 Relatório
The end products of burning a candle in the atmosphere are water and
Detalhes da Resposta
Pergunta 9 Relatório
In electrovalency, the oxidation number of the participating metal is always
Detalhes da Resposta
Pergunta 10 Relatório
H2 S(g) + Cl2(g) → 2HCl(g) + S(g) In the reaction above, the substance that is reduced is
Detalhes da Resposta
Pergunta 11 Relatório
A balanced chemical equation obeys the law of
Detalhes da Resposta
A balanced chemical equation obeys the law of conservation of mass. This means that in a chemical reaction, the total mass of the reactants must be equal to the total mass of the products. In other words, atoms cannot be created or destroyed during a chemical reaction, only rearranged. For example, if we burn a piece of wood, the mass of the ashes and the gases released will be equal to the mass of the original wood. This is because the atoms in the wood (carbon, hydrogen, oxygen, etc.) are rearranged during the burning process to form new molecules, but the total number of atoms remains the same. By balancing a chemical equation, we ensure that the same number and type of atoms are present on both sides of the equation, which satisfies the law of conservation of mass.
Pergunta 12 Relatório
The collision theory explains reaction rates in terms of
Detalhes da Resposta
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Pergunta 13 Relatório
An element X forms the following compounds with chlorine; XCl4 , XCl3 , XCl2 . This illustrates the
Detalhes da Resposta
The element X forming different compounds with chlorine (XCl4, XCl3, and XCl2) illustrates the law of multiple proportions. This law states that when two elements combine to form more than one compound, the ratio of the masses of one element that combine with a fixed mass of the other element is always a whole number ratio. In this case, the ratio of chlorine to X in the different compounds (XCl4, XCl3, and XCl2) is 4:1, 3:1, and 2:1, respectively, which are all whole number ratios.
Pergunta 14 Relatório
In the laboratory preparation of oxygen, the gas cannot be collected by displacement of air because
Detalhes da Resposta
Pergunta 15 Relatório
The alkanoic acid found in human sweat is
Detalhes da Resposta
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Pergunta 16 Relatório
The choice of method for extracting a metal from its ores depends on the
Detalhes da Resposta
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Pergunta 17 Relatório
Suitable reagents for the laboratory preparation nitrogen are
Detalhes da Resposta
Pergunta 18 Relatório
3H2(g) + N2 ⇔ 2NH3(g) ; H= -ve
In the reaction above, lowering of temperature will
Detalhes da Resposta
Pergunta 19 Relatório
Which of these sources of water may likely contain the least concentration of Ca2+ and Mg2+ ?
Detalhes da Resposta
The source of water that is likely to contain the least concentration of Ca2+ and Mg2+ is tap water. Tap water is treated and processed before it is made available for consumption, which often involves removing minerals such as calcium and magnesium. Spring water and river water, on the other hand, are naturally occurring and generally contain higher levels of minerals. Sea water has the highest concentration of minerals, including Ca2+ and Mg2+.
Pergunta 20 Relatório
A substance that is used as a ripening agent for fruits is
Detalhes da Resposta
The substance that is commonly used as a ripening agent for fruits is ethene. Ethene, also known as ethylene, is a natural plant hormone that is produced by fruits, especially during the ripening process. It is a colorless gas that can be easily synthesized and used as a ripening agent for fruits. When fruits are exposed to ethene, it triggers a series of biochemical reactions that accelerate the natural ripening process. This can help fruits to ripen faster and more uniformly, which is important for commercial purposes where fruits need to be sold quickly. The use of ethene as a ripening agent is regulated by food safety agencies, as excessive exposure to ethene can cause over-ripening and spoilage of fruits. However, when used in appropriate concentrations, ethene is a safe and effective way to promote the ripening of fruits.
Pergunta 21 Relatório
What mass of Cu would be produced by the cathodic reduction of Cu2+ when 1.60A of current passes through a solution of CuSO4 for 1 hour. (F=96500Cmol−1 , Cu=64)
Detalhes da Resposta
The reduction reaction that occurs at the cathode during the electrolysis of CuSO4" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-1-Frame">4, is: Cu2+" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-2-Frame">2+ + 2e- -> Cu(s) From this, we can see that each Cu2+ ion requires two electrons to be reduced to copper metal. Given the current (I = 1.60 A), time (t = 1 hour = 3600 s), and Faraday's constant (F = 96500 C/mol), we can calculate the total amount of charge that passes through the solution: Q = I*t = 1.60 A * 3600 s = 5760 C Using Faraday's law, we can relate the amount of charge that passes through the solution to the number of moles of electrons transferred during the reduction reaction: n = Q/F = 5760 C / 96500 C/mol = 0.0597 mol e- Since each Cu2+ ion requires 2 electrons to be reduced to copper metal, the number of moles of copper produced is half the number of moles of electrons transferred: mol Cu = 0.0597 mol e- / 2 = 0.0299 mol Cu Finally, we can convert the moles of copper produced to grams using the molar mass of copper: mass Cu = 0.0299 mol Cu * 64 g/mol = 1.91 g Therefore, the answer is 1.91 g of Cu produced. is correct.
Pergunta 22 Relatório
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Detalhes da Resposta
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Pergunta 23 Relatório
The derivative of benzene that can be used in making explosives is
Detalhes da Resposta
Pergunta 24 Relatório
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as;
Detalhes da Resposta
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as esterification. Esterification is the process of forming an ester, which is a type of organic compound, from an alcohol and an acid. The acid catalyst is used to speed up the reaction by providing a proton to the reaction mixture, which helps to form the ester. Esterification results in the loss of a water molecule from the reaction mixture, which makes the reaction a type of dehydration reaction. However, it is important to note that esterification is a specific type of dehydration reaction where the products are an ester and an alcohol. So, the answer is esterification.
Pergunta 25 Relatório
2KClO3(g) MNO3? 2KCl(s) + 3O2(g)
The importance of the catalyst in the reaction above is that
Detalhes da Resposta
Pergunta 27 Relatório
The situation obtained when a perfect gas expands into a vacuum is
Detalhes da Resposta
Pergunta 28 Relatório
Beryllium and Aluminium have similar properties because they
Detalhes da Resposta
Pergunta 29 Relatório
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Detalhes da Resposta
Pergunta 30 Relatório
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Detalhes da Resposta
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Pergunta 31 Relatório
The type of bonding in [Cu(NH3 )4 ]2+ is
Detalhes da Resposta
The type of bonding in [Cu(NH3)4]2+ is coordinate bonding. Coordinate bonding (also known as dative covalent bonding) is a type of covalent bonding where one atom (in this case, the nitrogen atom in NH3) donates a pair of electrons to another atom or ion (in this case, the copper ion Cu2+). The donating atom is called the ligand, and the receiving atom or ion is called the central metal ion. In [Cu(NH3)4]2+, each ammonia molecule (NH3) donates a lone pair of electrons on the nitrogen atom to the copper ion, forming four coordinate bonds between the ligands and the central copper ion. The presence of coordinate bonds is indicated by the use of square brackets around the coordination compound, and the charge on the compound is indicated by the superscript outside the brackets. Therefore, the answer is option A: coordinate.
Pergunta 32 Relatório
According to Charles' law, the volume of a gas becomes zero at
Detalhes da Resposta
Charles' law states that the volume of a gas is directly proportional to its temperature, provided that the pressure remains constant. This means that as the temperature of a gas increases, its volume also increases. However, it is important to note that this law only applies to ideal gases, which are theoretical gases that perfectly follow the laws of thermodynamics. According to Charles' law, the volume of a gas becomes zero at absolute zero, which is approximately -273°C. At this temperature, the gas particles would have no kinetic energy and would be in their lowest energy state. The volume of a real gas would not actually become zero at absolute zero because the gas particles would have some residual intermolecular interactions that would prevent them from completely collapsing to a single point.
Pergunta 33 Relatório
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Detalhes da Resposta
Pergunta 34 Relatório
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Detalhes da Resposta
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Pergunta 35 Relatório
Which of the following are mixtures?
I. Petroleum
II. Rubber latex
III. Vulcanizer's solution
IV. Carbon sulphide
Detalhes da Resposta
Pergunta 36 Relatório
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Detalhes da Resposta
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Pergunta 37 Relatório
Calculate the pH of 0.05 moldm?3 H2 SO4
Detalhes da Resposta
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Pergunta 38 Relatório
The radio isotope used in industrial radiography for the rapid checking of faults in welds and casting is?
Detalhes da Resposta
Pergunta 39 Relatório
The boiling of fat and aqueous caustic soda is referred to as
Detalhes da Resposta
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Pergunta 40 Relatório
The constituent common to duralumin and alnico is
Detalhes da Resposta
The common constituent found in both duralumin and alnico is aluminum (Al). Duralumin is an alloy made up of aluminum, copper, manganese, and magnesium. It is known for its high strength and light weight, making it useful in various applications such as aerospace and construction. Alnico, on the other hand, is an alloy made of aluminum, nickel, cobalt, iron, and small amounts of other elements. It is used in the production of strong permanent magnets for various applications such as in motors, generators, and loudspeakers. So, even though duralumin and alnico have different properties and uses, they both contain the element aluminum.
Gostaria de prosseguir com esta ação?