Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 2 Ìròyìn
What is the shape of a molecule of CCl4?
Awọn alaye Idahun
The shape of a molecule of CCl4 is tetrahedral.
Ibeere 3 Ìròyìn
An organic compound which liberate carbon(iv)oxide from trioxocarbonate(iv) solution is likely to be?
Awọn alaye Idahun
The organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution is CH3COOH (acetic acid). When acetic acid is added to a solution of trioxocarbonate(iv) (carbonate) it reacts to form carbon(iv)oxide gas, water and a salt. The balanced chemical equation for the reaction is: 2CH3COOH + Na2CO3 → CO2 + 2H2O + 2NaCH3COO The carbon(iv)oxide gas is released as bubbles, causing the solution to fizz. Therefore, CH3COOH is the organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution.
Ibeere 4 Ìròyìn
H2SO4 is used to remove rust on the surface of iron (picking) before electroplating. The type of reaction involved is
Awọn alaye Idahun
The type of reaction involved when using H2SO4 to remove rust on the surface of iron is a redox reaction. This is because the sulfuric acid oxidizes the iron in the rust, converting it into iron(II) sulfate, while the acid itself is reduced to sulfur dioxide. The overall reaction can be written as follows: Fe2O3(s) + 3H2SO4(aq) → Fe2(SO4)3(aq) + 3H2O(l) In this reaction, the iron in Fe2O3 is oxidized from a +3 to a +2 oxidation state, while the sulfur in H2SO4 is reduced from a +6 to a +4 oxidation state. This transfer of electrons between the reactants is what defines a redox reaction.
Ibeere 5 Ìròyìn
The sulphide that is commonly used in coating electric fluorescent tubes is?
Awọn alaye Idahun
The sulphide commonly used in coating electric fluorescent tubes is Zinc Sulphide. Zinc Sulphide is a type of material that glows when it is exposed to ultraviolet light. When ultraviolet light is generated inside a fluorescent tube, it excites the Zinc Sulphide particles, causing them to emit visible light. This visible light is what we see as the bright light coming from the tube. So, Zinc Sulphide acts as a phosphor and helps in producing the bright light in fluorescent tubes.
Ibeere 6 Ìròyìn
30 cm3 of oxygen at 10 atmosphere pressure is placed in a 20 dm3 container. Calculate the new pressure if the temperature is kept constant.
Awọn alaye Idahun
Given:
First, convert all volumes to the same units. Since 1 dm3dm3 is 1000 cm3cm3:
𝑉2=20 dm3=20×1000 cm3=20000 cm3V2=20dm3=20×1000cm3=20000cm3
Now, using Boyle's Law:
𝑃1𝑉1=𝑃2𝑉2P1V1=P2V2
Substitute the known values into the equation:
10×30=𝑃2×2000010×30=P2×20000
300=𝑃2×20000300=P2×20000
Solve for 𝑃2P2:
𝑃2=30020000P2=20000300
𝑃2=0.015 atmospheresP2=0.015atmospheres
Therefore, the new pressure if the temperature is kept constant is:
Ibeere 7 Ìròyìn
Ethene, when passed into concentrated H2SO4, is rapidly absorbed. The product is diluted with water and then warmed to produce
Awọn alaye Idahun
When ethene is passed into concentrated H2SO4, it undergoes electrophilic addition reaction to form ethyl hydrogen sulfate as the product. The reaction mixture is then diluted with water and warmed to produce ethanol as the main product. Therefore, the answer is ethanol.
Ibeere 8 Ìròyìn
GAS | CO2 | N2 | O2 |
% BY VOLUME | 4 | 72 | 24 |
The above table shows the compositions of the atmosphere of planet X. Which of these gases are present in higher percentages on earth?
Awọn alaye Idahun
Ibeere 9 Ìròyìn
A colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is?
Awọn alaye Idahun
The colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is chlorine. Chlorine is a highly reactive chemical element that is used in the production of many everyday products, such as paper, textiles, and plastics. It is also used as a disinfectant in swimming pools and water treatment plants. Inhaling chlorine gas can cause severe respiratory problems, including coughing, chest pain, and difficulty breathing. Prolonged exposure to chlorine can cause lung damage, and in extreme cases, it can be fatal. Chlorine gas is also highly irritating to the eyes, skin, and mucous membranes. It is important to handle chlorine with caution and to use appropriate protective gear, such as gloves and respiratory masks, when working with it. Proper ventilation and monitoring of chlorine levels are also essential to prevent exposure to this toxic gas.
Ibeere 10 Ìròyìn
The function of sulphur during the vulcanization of rubber is to
Awọn alaye Idahun
The function of sulphur during the vulcanization of rubber is to form chains which bind rubber molecules together.
Ibeere 11 Ìròyìn
In the extraction of iron, hot air is introduced into the blast furnace through?
Awọn alaye Idahun
In the extraction of iron, hot air is introduced into the blast furnace through tuyeres. Tuyeres are nozzles that are located at the bottom of the blast furnace, and they are used to blow hot air into the furnace. The hot air helps to burn the coke (a fuel made from coal) which provides the heat needed to melt the iron ore. The air also helps to remove the waste gases that are produced during the reaction, allowing the iron to be extracted more efficiently.
Ibeere 12 Ìròyìn
Chlorine is a common bleaching agent. This is not true with
Awọn alaye Idahun
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Ibeere 14 Ìròyìn
A certain liquid has a high boiling point. It is viscous, non-toxic, and miscible with water to be hygroscopic; this liquid most likely to be
Awọn alaye Idahun
The liquid is most likely to be option number 4: CH3OHCHOH2OH, which is also known as glycerol or glycerin. Glycerol has a high boiling point of 290°C, which is much higher than the boiling points of the other options. It is also a viscous liquid, which means it is thick and sticky. Glycerol is non-toxic, and it is often used in food, pharmaceuticals, and cosmetics. Furthermore, glycerol is miscible with water, which means that it can be easily mixed with water to form a homogeneous solution. It is also hygroscopic, which means that it can absorb water from the air. These properties make glycerol a useful substance in many applications, such as as a moisturizer in skincare products or as a humectant in food processing.
Ibeere 15 Ìròyìn
N2 O4 ? 2NO2 (? = -ve)
From the reaction above, which of these conditions would produce the highest equilibrium yield for N2 O4 ?
Awọn alaye Idahun
The highest equilibrium yield of N2O4 would be produced at low temperature and low pressure. In a chemical reaction, the position of the equilibrium can be influenced by changing the temperature or pressure. A decrease in temperature or an increase in pressure favors the side of the reaction with the fewer moles of gas (in this case, N2O4). This means that, if the temperature is low and the pressure is low, there will be more N2O4 at equilibrium, as the reaction will shift to the right to counteract the reduction in the concentration of N2O4. So, low temperature and low pressure would produce the highest equilibrium yield of N2O4.
Ibeere 16 Ìròyìn
An organic compound decolourized acidified KMnO4 solution but failed to react with ammonical AgNO3 solution. The organic compound is likely?
Awọn alaye Idahun
The given information suggests that the organic compound is an unsaturated compound (because it decolorized the acidified KMnO4 solution), but it does not contain a functional group that reacts with ammonical AgNO3 solution. Therefore, the likely organic compound is an alkene or an alkyne. Carboxylic acids can also react with acidified KMnO4 solution, but they would also react with ammonical AgNO3 solution to form a silver carboxylate salt. Alkanes are saturated compounds and do not react with either reagent, so they would not decolorize the acidified KMnO4 solution. Therefore, based on the given information, the most likely option is either an alkene or an alkyne.
Ibeere 17 Ìròyìn
An organic compound with fishy smell is likely to have a general formula?
Awọn alaye Idahun
The organic compound with a fishy smell is most likely to have the general formula RNH2, which represents a primary amine. Amines are organic compounds that contain a nitrogen atom bonded to one or more carbon atoms. Primary amines have one alkyl or aryl group and two hydrogen atoms bonded to the nitrogen atom. Some primary amines have a fishy smell, which is caused by the presence of volatile amines. These amines are small molecules that can easily evaporate and have a strong odor, similar to that of fish. Examples of compounds that have a fishy smell include trimethylamine, which is found in fish, and butylamine, which is used in the production of rubber and pharmaceuticals. In summary, the organic compound with a fishy smell is likely to have the general formula RNH2, which represents a primary amine.
Ibeere 18 Ìròyìn
Crude petroleum is converted to useful products by the process of?
Awọn alaye Idahun
The process of converting crude petroleum into useful products is known as fractional distillation. Crude petroleum is a mixture of different hydrocarbons, and fractional distillation separates these hydrocarbons based on their boiling points. During the process of fractional distillation, crude petroleum is heated to a high temperature, and the resulting vapors are passed through a tower called a fractionating column. This column contains a series of trays, and each tray contains a specific temperature range. As the vapors rise up the column, they cool and condense into liquids on the tray with a temperature that matches their boiling point. The liquids are then collected and further refined into useful products like gasoline, diesel, jet fuel, and heating oil. Fractional distillation is an important process because it allows us to separate and purify the different components of crude petroleum, which have different properties and uses. For example, gasoline has a lower boiling point and is more volatile than diesel fuel, which makes it ideal for use in cars. By separating these components, we can create products that meet specific needs and requirements.
Ibeere 19 Ìròyìn
There is a large temperature interval between the melting point and the boiling point of metal because:
Awọn alaye Idahun
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Ibeere 20 Ìròyìn
which of these compounds exhibits resonance
Awọn alaye Idahun
The compound that exhibits resonance is benzene.
Ibeere 21 Ìròyìn
Which of the following compound is NOT the correct formed compound when the parent metal is heated in air?
Awọn alaye Idahun
The compound that is NOT correctly formed when the parent metal is heated in air is: tri-iron tetraoxide (Fe2O). This is because the correct compound formed from the heating of iron in air is iron (III) oxide or Fe2O3. The formula for tri-iron tetraoxide is incorrect, as it implies that there are only three iron atoms in the compound when there should be four.
Ibeere 22 Ìròyìn
Zn + 2HCL → ZnCl2 + H2
What happens to zinc in the above reaction?
Awọn alaye Idahun
In the above reaction, zinc (Zn) reacts with hydrochloric acid (HCl) to form zinc chloride (ZnCl2) and hydrogen gas (H2). The chemical equation for the reaction is: Zn + 2HCl → ZnCl2 + H2 During the reaction, zinc atoms lose two electrons each and get oxidized to form positively charged zinc ions (Zn2+), as they react with the hydrogen ions (H+) from the hydrochloric acid to form zinc chloride. The hydrogen ions, on the other hand, gain an electron each and get reduced to form hydrogen gas molecules (H2). Therefore, in the given reaction, zinc is getting oxidized, as it loses electrons and forms a positively charged ion. Hence, the correct option is "oxidized."
Ibeere 23 Ìròyìn
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Awọn alaye Idahun
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Ibeere 24 Ìròyìn
In order to electroplate spoon with silver, the arrangement of the electrolytic cell is?
Awọn alaye Idahun
Ibeere 27 Ìròyìn
When marble is heated to 1473K, another whiter solid is obtained which reacts vigoriously with water to give an alkaline solution. The solution contains
Awọn alaye Idahun
The white solid obtained when marble (calcium carbonate, CaCO3) is heated to 1473K is calcium oxide (CaO), also known as quicklime. When quicklime reacts vigorously with water, it forms calcium hydroxide (Ca(OH)2), which is an alkaline solution. Therefore, the solution obtained from the reaction of quicklime with water contains calcium hydroxide (Ca(OH)2).
Ibeere 29 Ìròyìn
Awọn alaye Idahun
The addition of charcoal to the filter bed of sand during water treatment for township supply is to remove odors and improve the taste of the water. Charcoal is a porous material that can adsorb impurities and chemicals from the water, such as dissolved organic matter that can contribute to unpleasant tastes and odors. This process helps to produce a better-quality drinking water that is free from unpleasant tastes and odors. It should be noted that while the addition of charcoal can help remove impurities, it does not kill germs or prevent tooth decay or goiter. Other water treatment methods, such as disinfection with chlorine or ultraviolet light, are required to kill harmful microorganisms and ensure the safety of the drinking water.
Ibeere 30 Ìròyìn
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Awọn alaye Idahun
Ibeere 31 Ìròyìn
When heat is absorbed during a chemical reaction, the reaction is said to be
Awọn alaye Idahun
When heat is absorbed during a chemical reaction, the reaction is said to be endothermic. Endothermic reactions are characterized by the absorption of heat energy from the surroundings. In other words, the reactants absorb energy from the environment, usually in the form of heat, to form the products. As a result, the temperature of the surroundings decreases, and the reaction feels cold to the touch. Endothermic reactions can be found in many natural processes, such as photosynthesis, melting of ice, and the evaporation of liquids. These processes require energy to occur, and they absorb heat from the surroundings to power the reaction.
Ibeere 32 Ìròyìn
The sub-atomic particles located in the nucleus of an atom are?
Awọn alaye Idahun
The sub-atomic particles located in the nucleus of an atom are neutron and proton. The nucleus is the dense core of an atom that contains most of its mass. Protons are positively charged particles found in the nucleus, and they determine the atomic number of the element. Neutrons are neutral particles found in the nucleus, and they help stabilize the nucleus by balancing the repulsive forces between the positively charged protons. Electrons, on the other hand, are negatively charged particles that are located outside the nucleus in energy levels or shells. They are attracted to the positively charged nucleus by electrostatic forces and are involved in chemical bonding between atoms. The number of protons in the nucleus determines the identity of the element, while the number of neutrons determines its isotopes. Isotopes of an element have the same number of protons but different numbers of neutrons in the nucleus. In summary, the two sub-atomic particles located in the nucleus of an atom are neutron and proton.
Ibeere 33 Ìròyìn
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Awọn alaye Idahun
Ibeere 34 Ìròyìn
On the basis of the electrochemical series, which of these ions will show the greater tendency to be discharged at the cathode in an electrolytic cell
Awọn alaye Idahun
The electrochemical series is a list of metals and ions arranged in order of their decreasing tendency to lose or gain electrons, and thus, their ability to act as reducing or oxidizing agents. The higher the position of a metal or ion in the electrochemical series, the greater its tendency to lose electrons and undergo oxidation, while the lower its position, the greater its tendency to gain electrons and undergo reduction. In an electrolytic cell, the cathode is the electrode where reduction occurs, meaning that cations (positively charged ions) are attracted and gain electrons to form neutral atoms or molecules. Based on the electrochemical series, the ion with the higher position in the series will have a greater tendency to gain electrons and be discharged at the cathode, while the ion with the lower position will have a lower tendency and may not be discharged at all. Among the given options, the electrochemical series order is: Cu2+ > Sn2+ > Fe2+ > Zn2+ Therefore, Cu2+ has the highest tendency to be discharged at the cathode and undergo reduction, while Zn2+ has the lowest tendency. So, in an electrolytic cell, Cu2+ will be discharged at the cathode, while Zn2+ may not be discharged at all, depending on the conditions of the cell.
Ibeere 36 Ìròyìn
Hard water is water with high concentrations of dissolved ions, in particular calcium and
Awọn alaye Idahun
Hard water is water that contains high amounts of dissolved minerals, specifically calcium and magnesium ions. These minerals come from the rocks and soil that the water flows through and can accumulate in the water as it travels to your home. When you use hard water, it can leave mineral deposits on your pipes, fixtures, and appliances, which can reduce their efficiency and lifespan. It can also make soap less effective and leave your skin feeling dry and itchy. Therefore, it is important to treat hard water if it is a problem in your area.
Ibeere 38 Ìròyìn
Awọn alaye Idahun
Carbon dioxide (CO2) has a linear molecular geometry, with two oxygen atoms bonded to the central carbon atom. Each bond between carbon and oxygen is a double bond, consisting of two pairs of electrons shared between the atoms. Therefore, there are two bonding pairs in each of the carbon-oxygen double bonds, giving a total of four bonding pairs in CO2. The answer is 4.
Ibeere 39 Ìròyìn
Using the metal activity series, the metal that can liberate hydrogen gas from steam is?
Awọn alaye Idahun
The metal that can liberate hydrogen gas from steam is iron. The metal activity series is a list of metals in order of their reactivity, with the most reactive metals at the top and the least reactive metals at the bottom. When a metal is placed in a solution of steam (water vapor), the metal will react with the steam if it is more reactive than hydrogen. In this case, iron is more reactive than hydrogen, so it can displace hydrogen from the steam to form hydrogen gas. This reaction can be represented by the equation: Fe + H2O (steam) → FeO (iron oxide) + H2 (hydrogen gas) So, when steam is passed over iron, hydrogen gas is liberated and iron oxide is formed.
Ibeere 40 Ìròyìn
Which of the following roles does sodium chloride play in preparation? It
Awọn alaye Idahun
The role that sodium chloride (NaCl) plays in soap preparation is to separate soap from glycerol. When fats or oils are hydrolyzed with an alkali, such as sodium hydroxide (NaOH), the result is a mixture of soap and glycerol. Adding NaCl to this mixture helps to induce the precipitation of the soap, allowing it to be separated from the glycerol. This process is known as "salting out" and is used to purify the soap and remove impurities. Sodium chloride does not react with glycerol or accelerate the decomposition of fat and oil. Also, it does not convert the fatty acid to its sodium salt as this conversion is done by the alkali (such as NaOH) during the saponification process.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?