Nkojọpọ....
|
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
|
Tẹ ibi lati pa |
|||
Ibeere 1 Ìròyìn
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Awọn alaye Idahun
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Ibeere 2 Ìròyìn
A secondary alkanol can be oxidized to give an
Awọn alaye Idahun
A secondary alkanol is an alcohol with two carbon atoms attached to the carbon bearing the hydroxyl group (-OH). Secondary alkanols can be oxidized by a strong oxidizing agent, such as potassium dichromate (K2Cr2O7), to give an alkanone. During the oxidation process, the oxygen atom from the oxidizing agent replaces the hydroxyl group of the secondary alkanol to form a carbonyl group (C=O) in the alkanone. Since alkanones contain a carbonyl group, they are also known as ketones. Therefore, the answer to the question is alkanone, as secondary alkanols can be oxidized to form ketones.
Ibeere 3 Ìròyìn
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Awọn alaye Idahun
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Ibeere 4 Ìròyìn
By what amount must the temperature of 200cm3 of Nitrogen at 27°C be increased to double the pressure if the final volume is 150cm3 (Assume ideality)
Awọn alaye Idahun
Using the ideal gas law and equation:
P1V1T1=P2V2T2
P1×200cm3300K=2P×150cm3T2
Cross multiply:
T2=300×150×2P200×P
=450K
or 177∘C
Don't forget to convert to ∘C
Ibeere 5 Ìròyìn
Which of the following is a physical change?
Awọn alaye Idahun
A physical change refers to a change in a substance that does not result in a change in its chemical composition. Out of the options provided, freezing ice cream is a physical change. This is because when ice cream is frozen, it changes from a liquid state to a solid state without any chemical reaction occurring. Exposing white phosphorus to air is a chemical change, as it reacts with oxygen in the air to form a new substance, phosphorus oxide. Burning kerosene is also a chemical change, as it undergoes combustion to form new substances, such as carbon dioxide and water vapor. Dissolving calcium in water is a physical change, as it simply involves the physical mixing of two substances without any chemical reaction occurring. Therefore, the only option that is a physical change is freezing ice cream.
Ibeere 6 Ìròyìn
Na2 CO3 + 2HCl → 2NaCl + H2 O + CO2
The indicator most suitable for this reaction should have a pH equal to
Awọn alaye Idahun
Methyl orange is the best indicator for the reaction with range 3.1 - 4.4.
Ibeere 7 Ìròyìn
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Awọn alaye Idahun
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Ibeere 8 Ìròyìn
A radioactive nucleus has a half-life of 20 years, starting with 100,000 particles, how many particles will be left exactly at the end of 40 years
Awọn alaye Idahun
The half-life of a radioactive nucleus is the time it takes for half of its particles to decay. This means that after 20 years, 100,000 particles will become 50,000 particles. After 40 years, we can find the number of particles remaining by counting the number of half-lives that have passed. Since 40 years is double the half-life of 20 years, this means that two half-lives have passed, so the number of particles will be halved twice. Starting with 100,000 particles: - After 1 half-life (20 years), there will be 50,000 particles remaining. - After 2 half-lives (40 years), there will be 25,000 particles remaining. So, exactly at the end of 40 years, there will be 25,000 particles remaining.
Ibeere 9 Ìròyìn
Which of the following gases contains the least number of atoms at s.t.p?
Awọn alaye Idahun
At standard temperature and pressure (s.t.p), all gases have the same number of atoms or molecules. What changes between them is the volume they occupy, and this is dependent on their molecular mass and the number of moles. Comparing the number of moles between the gases listed above, 7 moles of argon will contain the most number of atoms, followed by 4 moles of chlorine, then 3 moles of ozone, and finally 1 mole of butane would contain the least number of atoms. In summary, the number of atoms in a gas sample depends on the number of moles, but at s.t.p, the volume occupied by each gas depends on its molecular mass and the number of moles.
Ibeere 10 Ìròyìn
The following are isoelectronic ions except
Awọn alaye Idahun
Two or more ions are said to be isoelectronic if they have the same electronic structure and the same number of valence electrons.
Na+
= 10 electrons = 2, 8
Mg2+
= 10 electrons = 2,8
O2−
= 10 electrons = 2,8
Si2+
= 12 electrons = 2,8,2
⟹
Si2+
is not isoelectronic with the rest.
Ibeere 11 Ìròyìn
In the reaction:
M + N → P
ΔH = +Q kJWhich of the following would increase the concentration of the product?
Awọn alaye Idahun
Increasing the temperature would increase the concentration of the product, P. The reaction rate, or the speed at which the reaction occurs, is influenced by temperature. An increase in temperature raises the kinetic energy of the reacting molecules, making it easier for them to collide and react. This leads to a higher rate of reaction and a higher concentration of the product, P. Adding a suitable catalyst can also increase the reaction rate, but it does not directly affect the concentration of the product. Increasing the concentration of P does not affect the reaction itself, but is a result of the reaction having taken place. Decreasing the temperature would slow down the reaction rate and reduce the concentration of the product.
Ibeere 12 Ìròyìn
The shapes of water, ammonia, carbon (iv) oxide and methane are respectively
Awọn alaye Idahun
Ibeere 13 Ìròyìn
A solution X, on mixing with AgNO3 solution gives a white precipitate soluble in aqueous NH3 , a solution Y, when also added to X, also gives a white precipitate which is soluble when heated solutions X and Y respectively contain
Awọn alaye Idahun
Ibeere 14 Ìròyìn
Which of the following statements does not show Rutherford's account of Nuclear Theory? An atom contains a region
Awọn alaye Idahun
Rutherford's account of Nuclear theory does not include the fact that atoms contain a massive region and cause deflection of from projectiles.
Ibeere 15 Ìròyìn
The IUPAC nomenclature of the compound
H3 C - CH(CH3 ) - CH(CH3 ) - CH2 - CH3
Awọn alaye Idahun
Ibeere 16 Ìròyìn
When chlorine water is exposed to bright sunlight, the following products are formed
Awọn alaye Idahun
Ibeere 17 Ìròyìn
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Awọn alaye Idahun
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Ibeere 18 Ìròyìn
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Awọn alaye Idahun
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Ibeere 19 Ìròyìn
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Awọn alaye Idahun
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Ibeere 22 Ìròyìn
A synthetic rubber is obtained from the polymerization of
Awọn alaye Idahun
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Ibeere 23 Ìròyìn
X is a substance which liberates CO2 on treatment with concentrated H2 SO4 . A warm solution of X can decolorize acidified KMnO4 . X is
Awọn alaye Idahun
It should be noted that for X to liberate CO2
, X must be a carbonate or an oxalate. Since X decolorizes KMnO4
, X must be an oxalate.
Therefore, X is H2
C2
O4
.
Ibeere 24 Ìròyìn
Which of the following could not be alkane?
Awọn alaye Idahun
An alkane is a type of hydrocarbon with only single bonds between the carbon atoms. It follows the general formula CnH2n+2, where "n" is the number of carbon atoms in the molecule. To determine whether a molecule is an alkane or not, we can calculate its molecular formula and check if it fits the general formula of alkane. Out of the given options, the third one (C7H14) cannot be an alkane. To see why, let's use the general formula of alkane, which is CnH2n+2. For C7H14 to be an alkane, it should have 2n+2 = 2(7) + 2 = 16 hydrogen atoms. However, C7H14 has only 14 hydrogen atoms, which means it does not follow the general formula of alkane. Therefore, C7H14 cannot be an alkane. The other options are as follows: - C4H10: This is butane, which is an alkane with four carbon atoms. - C5H12: This is pentane, which is an alkane with five carbon atoms. - C8H18: This is octane, which is an alkane with eight carbon atoms. In summary, the molecule C7H14 cannot be an alkane because it does not follow the general formula of alkane, while the other options are all examples of alkanes.
Ibeere 25 Ìròyìn
When ammonia and hydrogen ion bond together to form ammonium ion, the bond formed is called
Awọn alaye Idahun
When ammonia and hydrogen ion go into bonding, they form ammonium ion by combining with a dative/coordinate covalent bond.
Ibeere 26 Ìròyìn
The oxidation state(s) of nitrogen in ammonium nitrite is/are
Awọn alaye Idahun
Ammonium nitrite = NH4
NO2
NH+4
: Let the oxidation number of Nitrogen = x
x + 4 = 1 ⟹
x = 1 - 4
x = -3
NO−2
: x - 4 = -1
x = -1 + 4 ⟹
x = +3.
The oxidation numbers for Nitrogen in Ammonium Nitrite = -3, +3.
Ibeere 28 Ìròyìn
The heat of formation of ethene, C2 H4 is 50 kJmol−1 , and that of ethane, C2 H6 is -82kJmol−1 . Calculate the heat evolved in the process:
C2 H4 + H2 → C2 H6
Awọn alaye Idahun
The heat evolved in a chemical reaction can be calculated by subtracting the heat of formation of the reactants from the heat of formation of the products. In this case, the reactants are ethene (C2H4) and hydrogen (H2), and the product is ethane (C2H6). The heat of formation of ethene is 50 kJ/mol and that of hydrogen is 0 kJ/mol (because hydrogen is a reference element). The heat of formation of ethane is -82 kJ/mol. So, the heat evolved in the reaction is given by: Heat evolved = (Heat of formation of products) - (Heat of formation of reactants) = (-82 kJ/mol) - (50 kJ/mol + 0 kJ/mol) = -82 kJ/mol - 50 kJ/mol = -132 kJ/mol. Therefore, the heat evolved in the process is -132 kJ.
Ibeere 29 Ìròyìn
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Awọn alaye Idahun
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Ibeere 30 Ìròyìn
If the cost of electricity required to discharge 10g of an ion X3+ is N20.00, how much would it cost to discharge 6g of ion Y2+ ?
[1 faraday = 96,500C, atomic masses are X = 27, Y = 24]
Awọn alaye Idahun
X3+
+ 3e−
→
X
3F = 27g
xF = 10g
x3=1027⟹x=109F
109
F ≡
N20.00
1F is equivalent to x
1109=x20
910=x20⟹x=N18.00
1F is equivalent to N18.00.
Y2+
+ 2e−
→
Y
2F = 24g
xF = 6g
x = 6×224=12F
1F = N18.00
12
F = 12×N18.00
= N9.00
Ibeere 31 Ìròyìn
A compound contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen. If the molar mass of the compound is 180. Find the molecular formula.
[H = 1, C = 12, O = 16]
Awọn alaye Idahun
The molecular formula of a compound is determined by the number of atoms of each element present in the molecule. To find the molecular formula, we need to determine the number of atoms of each element in the compound. First, we convert the percent composition to grams. For example, 40.0% carbon means 40.0 g of carbon per 100 g of compound. Then we divide the number of grams of each element by the molar mass of each element. For example, 40.0 g of carbon divided by the molar mass of carbon (12 g/mol) gives us 3.33 mol of carbon. Next, we convert the number of moles of each element to the number of atoms by multiplying the number of moles by Avogadro's number (6.022 x 10^23 atoms/mol). Finally, we balance the numbers of atoms of each element by dividing them by the smallest number of atoms of all the elements and rounding to the nearest whole number. In this case, the smallest number of atoms is 2, which is the number of hydrogen atoms. So, we divide the number of atoms of carbon and oxygen by 2 to balance the numbers of atoms of all the elements. Therefore, the molecular formula of the compound is C6H12O6.
Ibeere 32 Ìròyìn
Which of the following statements about catalyst is false?
Awọn alaye Idahun
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Ibeere 33 Ìròyìn
The two ions responsible for hardness in water are
Awọn alaye Idahun
The ions responsible for hardness in water are Ca2+ and/or Mg2+. Hardness in water refers to the presence of calcium and magnesium ions, which are commonly found in natural water sources such as rivers, lakes, and groundwater. These ions can react with soap to form insoluble compounds, reducing the effectiveness of soap and causing scaling in pipes and appliances. The hardness of water is often measured in terms of the concentration of calcium and magnesium ions, expressed as calcium carbonate equivalents (CaCO3).
Ibeere 34 Ìròyìn
Which two gases can be used for the demonstration of the fountain experiment?
Awọn alaye Idahun
Two gases that can be used in the study of fountain experiment is ammonia gas and hydrogen chloride gas. The experiment introduces concepts like solubility and the gas laws at the entry level.
Ibeere 35 Ìròyìn
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Awọn alaye Idahun
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Ibeere 36 Ìròyìn
The molecular shape and bond angle of water are respectively
Awọn alaye Idahun
The shape of water molecule = Bent/ V- shaped
The bond angle of water = 104.5°/ 105°
Ibeere 37 Ìròyìn
Hydrogen diffused through a porous plug
Awọn alaye Idahun
Hydrogen gas (H2) diffuses faster than oxygen gas (O2) through a porous plug. This is because the rate of diffusion of a gas through a porous plug is inversely proportional to the square root of its molar mass. Since the molar mass of hydrogen (2 g/mol) is much smaller than that of oxygen (32 g/mol), the rate of diffusion of hydrogen through a porous plug is much faster than that of oxygen. To be more specific, the ratio of the diffusion rates of two gases through a porous plug is given by the equation: Rate of diffusion of gas A / Rate of diffusion of gas B = √(Molar mass of gas B / Molar mass of gas A) Using the molar masses of hydrogen and oxygen, we get: Rate of diffusion of hydrogen / Rate of diffusion of oxygen = √(32 g/mol / 2 g/mol) = √16 = 4 Therefore, hydrogen diffuses through a porous plug four times as fast as oxygen. Thus, the correct answer is: four times as fast as oxygen.
Ibeere 38 Ìròyìn
A certain hydrocarbon on complete combustion at s.t.p produced 89.6dm3 of CO2 and 54g of water. The hydrocarbon should be
Awọn alaye Idahun
In the question above an Hydrocarbon combust to give CO2 and H20
Let Hydrocarbon be
CxHy + x+Y/4O2= xCO2 + Y/2H2O
Mass of C0=44g and H2O=18g
at STP vol= 22.4
Therefore, 1mole of CO2 contains 44g and 22.4dm³ at STP
1mole = 22.4dm³
xmole = 89.6dm³
Cross multiplying x=89.6/22.4 =4mole of CO2 produce
1mole of H2O = 18g
Xmole = 56g
Cross multiplying
X = 56/18 = 3mole of H20
Then....
CxHy + X + y/4O2 = 4CO2+ 3H2O
Balancing
C4H6 + 6O2 = 4CO2 + 3H2O
Ibeere 39 Ìròyìn
The emission of two successive beta particles from the nucleus 3215P will produce
Awọn alaye Idahun
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?