Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
When the temperature of a liquid is increased, its surface tension
Awọn alaye Idahun
Surface tension or elasticity of a fluid decreases with increased in temperature
Ibeere 3 Ìròyìn
Efficiency of conduction in liquids and gases compared to solids is
Awọn alaye Idahun
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Ibeere 4 Ìròyìn
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Awọn alaye Idahun
Latent heat or specific latent heat = L
Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Ibeere 5 Ìròyìn
In the molecular explanation, heat is transferred by the
Awọn alaye Idahun
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Ibeere 6 Ìròyìn
Neutrons were discovered by
Awọn alaye Idahun
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Ibeere 7 Ìròyìn
The angular dispersion of a prism depends on
Awọn alaye Idahun
Dispersion is due to different refractive indices speeds and wavelengths.
Ibeere 8 Ìròyìn
The resultant capacitance in the figure above is
Awọn alaye Idahun
For the parallel arrangement = 2 + 4 = 6μf
For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
1CT | = | 1512 |
CT | = | 1215 | = | 0.8μf |
Ibeere 9 Ìròyìn
Ripple in a power supply unit is caused by
Awọn alaye Idahun
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Ibeere 10 Ìròyìn
Aluminium is sometimes used as the leaf of an electroscope because it
Awọn alaye Idahun
- Aluminium can be made in thin sheet like Gold.
- the leaf is a thin material that can be diverged easily.
Ibeere 11 Ìròyìn
In semi-conductor, the carriers of current at room temperature are
Awọn alaye Idahun
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Ibeere 12 Ìròyìn
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Awọn alaye Idahun
Depth of sea can be measured by echo, a reflected sound waves.
Ibeere 13 Ìròyìn
The lead-acid accumulator consists of
Awọn alaye Idahun
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Ibeere 14 Ìròyìn
The mass of a nucleus is the
Awọn alaye Idahun
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Ibeere 15 Ìròyìn
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Awọn alaye Idahun
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Ibeere 16 Ìròyìn
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Awọn alaye Idahun
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
h | = | 200.8 | = | 25cm |
Ibeere 17 Ìròyìn
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Awọn alaye Idahun
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Ibeere 18 Ìròyìn
Radio waves belongs to the class of ware whose velocity is about
Awọn alaye Idahun
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Ibeere 19 Ìròyìn
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Awọn alaye Idahun
n = 200, S = 132 rev/min, v = 350m/s2
f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
λ | = | vf | = | 350440 | = | 0.875m |
Ibeere 20 Ìròyìn
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Awọn alaye Idahun
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Ibeere 21 Ìròyìn
In Sunlight, a blue flower looks blue because we see the flower by the light it
Awọn alaye Idahun
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Ibeere 22 Ìròyìn
In the molecular explanation of conduction, heat is transferred by the
Awọn alaye Idahun
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Ibeere 23 Ìròyìn
Which of the following is consistent with Charles' law?
I
II
III
IV.
Awọn alaye Idahun
This is the correct graph. The graph is volume against 1/ temperature where temperature is in Celsius.
Ibeere 24 Ìròyìn
Electrons were discovered by
Awọn alaye Idahun
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Ibeere 26 Ìròyìn
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Awọn alaye Idahun
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Ibeere 27 Ìròyìn
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Awọn alaye Idahun
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Ibeere 28 Ìròyìn
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Awọn alaye Idahun
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Ibeere 29 Ìròyìn
A man on a bench will exert the greatest pressure on the bench when he
Awọn alaye Idahun
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Ibeere 30 Ìròyìn
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Awọn alaye Idahun
CT | = | C1 × C2 C1 + C2 |
= | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Ibeere 31 Ìròyìn
According to kinetic molecular model, in gases
Awọn alaye Idahun
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Ibeere 32 Ìròyìn
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Awọn alaye Idahun
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Ibeere 33 Ìròyìn
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Awọn alaye Idahun
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Ibeere 34 Ìròyìn
Lamps in domestic lightings are usually in
Awọn alaye Idahun
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Ibeere 35 Ìròyìn
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Awọn alaye Idahun
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Ibeere 36 Ìròyìn
The pin-hole camera produces a less sharply defined image when the
Awọn alaye Idahun
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Ibeere 37 Ìròyìn
The equilibrium position of objects in any field corresponds to situation of
Awọn alaye Idahun
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Ibeere 38 Ìròyìn
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Awọn alaye Idahun
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Ibeere 39 Ìròyìn
When water is boiling, it
Awọn alaye Idahun
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Ibeere 40 Ìròyìn
Workdone on an object to bring it to a certain point in space is called
Awọn alaye Idahun
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?