Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Awọn alaye Idahun
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Ibeere 2 Ìròyìn
Any line or section taken through an advancing wave in which all the particles are in the same phase is called the
Awọn alaye Idahun
The answer is: wave front. A wave front is any imaginary line or surface that connects all points of a wave that are in the same phase, meaning they are at the same point in their cycle. In other words, it is a line or surface that separates the points of a wave that are in-phase from those that are out-of-phase. For example, consider the ripples on the surface of a pond when a stone is thrown in. The wave fronts are the concentric circles that emanate from the point where the stone entered the water. All points along a given circle are in-phase, meaning the water molecules at those points are at the same point in their oscillation cycle. In summary, a wave front is a line or surface that separates points in a wave that are in-phase from those that are out-of-phase.
Ibeere 3 Ìròyìn
The mass of a nucleus is the
Awọn alaye Idahun
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Ibeere 4 Ìròyìn
When blue and green colours of light are mixed, the resultant colour is
Ibeere 5 Ìròyìn
According to kinetic molecular model, in gases
Awọn alaye Idahun
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Ibeere 6 Ìròyìn
Efficiency of conduction in liquids and gases compared to solids is
Awọn alaye Idahun
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Ibeere 8 Ìròyìn
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Awọn alaye Idahun
P = 0.2cm, L = r = 23cm
VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Ibeere 9 Ìròyìn
A cone is in unstable equilibrium has its potential energy
Awọn alaye Idahun
In unstable equilibrium, potential energy decreases as the height decreases.
Ibeere 10 Ìròyìn
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Awọn alaye Idahun
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
P1 V1 T1 | = | P2 V2 T1 |
V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Ibeere 11 Ìròyìn
The pin-hole camera produces a less sharply defined image when the
Awọn alaye Idahun
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Ibeere 12 Ìròyìn
When the temperature of a liquid is increased, its surface tension
Awọn alaye Idahun
Surface tension or elasticity of a fluid decreases with increased in temperature
Ibeere 14 Ìròyìn
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Awọn alaye Idahun
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Ibeere 15 Ìròyìn
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Awọn alaye Idahun
f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Ibeere 16 Ìròyìn
A man on a bench will exert the greatest pressure on the bench when he
Awọn alaye Idahun
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Ibeere 17 Ìròyìn
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Awọn alaye Idahun
Latent heat or specific latent heat = L
Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Ibeere 18 Ìròyìn
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Awọn alaye Idahun
P = 0.45cm, L = 60cm, Eff = 75/π%
VR | (Screw | system) | = | 2πrP | = | 2πLP |
M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Ibeere 19 Ìròyìn
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Awọn alaye Idahun
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Ibeere 20 Ìròyìn
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Awọn alaye Idahun
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Ibeere 21 Ìròyìn
A coil X is moved quickly away from the end Y of a stationary metal bar and a current then flows in X as shown above.
Then
Awọn alaye Idahun
N - S magnet is moved towards a coil production clockwise direction of current in the coil.
- This is the same as a coil moved away from S-N (Y - North pole)
Ibeere 22 Ìròyìn
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Awọn alaye Idahun
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Ibeere 23 Ìròyìn
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Awọn alaye Idahun
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Ibeere 24 Ìròyìn
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Awọn alaye Idahun
Depth of sea can be measured by echo, a reflected sound waves.
Ibeere 25 Ìròyìn
Lamps in domestic lightings are usually in
Awọn alaye Idahun
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Ibeere 26 Ìròyìn
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Awọn alaye Idahun
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Ibeere 27 Ìròyìn
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Awọn alaye Idahun
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Ibeere 28 Ìròyìn
The momentum of a car moving at a constant speed in a circular track
Awọn alaye Idahun
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Ibeere 29 Ìròyìn
When water is boiling, it
Awọn alaye Idahun
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Ibeere 30 Ìròyìn
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Awọn alaye Idahun
CT | = | C1 × C2 C1 + C2 |
= | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Ibeere 31 Ìròyìn
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Awọn alaye Idahun
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Ibeere 32 Ìròyìn
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Awọn alaye Idahun
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Ibeere 33 Ìròyìn
A mixture of blue and red pigment when illuminated by white light will appear
Awọn alaye Idahun
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Ibeere 34 Ìròyìn
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Awọn alaye Idahun
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Ibeere 35 Ìròyìn
In Sunlight, a blue flower looks blue because we see the flower by the light it
Awọn alaye Idahun
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Ibeere 36 Ìròyìn
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Awọn alaye Idahun
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Ibeere 37 Ìròyìn
Gases conduct electricity under
Awọn alaye Idahun
Gases conduct electricity under low pressure and high voltage
Ibeere 38 Ìròyìn
Electrons were discovered by
Awọn alaye Idahun
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Ibeere 39 Ìròyìn
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Awọn alaye Idahun
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Ibeere 40 Ìròyìn
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Awọn alaye Idahun
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?