Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 2 Ìròyìn
The solution of the quadratic inequality (x2 + x - 12) ≥ 0 is
Awọn alaye Idahun
(x2 + x - 12) ≥
0 , (x - 3)(x + 4) ≥
0
For the condition to hold, each of (x - 3) and (x + 4) must be of the same sign
.i.e. x - 3 ≥
0 and x + 4 ≥
0
or x - 3≤
0 and x + 4 ≤
0
when x ≥
3, the condition is satisfied
when x ≥
-4, the condition is not satisfied.
when x ≤
3, the condition is not satisfied
when x ≤
-4 , the condition is not satisfied. Thus, the solution of the inequality is x ≥
3 or x ≤
-4 ,
Ibeere 3 Ìròyìn
What is the mean of the data t, 2t-1, t-2, 2t-1, 4t and 2t+2?
Awọn alaye Idahun
Ibeere 4 Ìròyìn
If p = varies inversely as the square of q and p=8 when q=4, find when p=32
Awọn alaye Idahun
P ∝ 1/q
P = k/q
K = q2P
= 428
∴P = 128/q
32 = 128/q
q2 = 128/32
q2 = 4
q = √4 = +/-2
Ibeere 5 Ìròyìn
Differentiate sin x - x cos x
Awọn alaye Idahun
sin x - x cos x
dy/dx = cos x - [1.cos x + x -sin x]
= co x - [cos x - x sin x]
= cos x - cos x + x sin x
= x sin x
Ibeere 6 Ìròyìn
Find the number of ways of selecting 6 out of 10 subjects for an examination
Awọn alaye Idahun
Ibeere 7 Ìròyìn
calculate the simple interest on N6,500 for 8 years at 5% per annum.
Ibeere 8 Ìròyìn
Evaluate ∫21(6x2−2x)dx
Awọn alaye Idahun
∫21(6x2−2x)dx=[6x33−2x22]21=[2x3−x2]21
= [2(2)3 - (2)2] – [2(1)3 - (1)2]
= [16-4] – [2-1]
= 12 – 1
= 11
Ibeere 9 Ìròyìn
The result of rolling a fair die 150 times is ass summarized in the table above. What is the probability of obtaining a 5
Awọn alaye Idahun
Total possible outcome
12+18+x+30+2x+45 = 105+3x
∴105+3x = 150
3x = 150-105
3x = 45
x = 15
P(obtaining 5) =2x(105+3x)Butx=15=2(15)(105+3(15))=30(105+45)=30150=15
Ibeere 10 Ìròyìn
Find the mean deviation of 2, 4, 5, and 9
Ibeere 11 Ìròyìn
The cost of kerosine per liter increase from N60 to N85. What is the percentage rate of increase?
Awọn alaye Idahun
N85 - N60 = N25 increase
∴ percentage increase =2560×1001=1253=41.67%=42%
Ibeere 12 Ìròyìn
If 2x2 - kx - 12 is divisible by x-4, Find the value of k.
Awọn alaye Idahun
2x2 - kx - 12 is divisible by x-4
implies x is a factor ∴ x = 4
f(4) implies 2(4)2 - k(4) - 12 = 0
32 - 4k - 12 = 0
-4k + 20 = 0
-4k = -20
k = 5
Ibeere 13 Ìròyìn
The fifth term of an A.P is 24 and the eleventh term is 96. Find the first term.
Awọn alaye Idahun
U5 = 24, n = 5 and U11 = 96, n = 11
Un = a + (n-1)d
24 = a + (5-1)d imply 24 = a+4d .....eqn1
96 = a + (11-1)d imply 96 = a+10d ...eqn2
eqn1 - eqn2 -72 = -6d
d = 72/6 = 12
but 24 = a+4d
24 = a + 4(12)
24 = a + 48
a = 24-48
a = -24
Ibeere 14 Ìròyìn
Find the area of the figure above
[π = 22/7]
Awọn alaye Idahun
Area of the figure = Area of rect + area of semi circle
=L×h+12πr25×15+12×227×(52)2=75+(22×25)2×7=75+92328=84.8cm
Ibeere 15 Ìròyìn
In the diagram < OPQ is
Ibeere 16 Ìròyìn
Add 11012,101112 and 1112
Ibeere 17 Ìròyìn
Factorize complete;y (4x+3y)2 - (3x-2y)2
Awọn alaye Idahun
(4x+3y)2 - (3x-2y)2
(4x+3y+3x-2y)(4x+3y-(3x-2y))
(4x+3y+3x-2y)(4x+3y-3x+2y)
(x+5y)(7x+y)
Ibeere 18 Ìròyìn
If X = {n2 + 1:n = 0,2,3} and Y = {n+1:n=2,3,5}, find X∩Y.
Ibeere 20 Ìròyìn
A book seller sells Mathematics and English books. If 30 customers buy Mathematics books, 20 customers buy English books and 10 customers buy the two books, How many customers has he altogether.
Awọn alaye Idahun
n(M) only = 30-10 = 20
n(E) only = 20-10 = 10
n(M∩E) = 10
∴M∪E = 20+10+10
= 40
Ibeere 21 Ìròyìn
Which of the following angles is an exterior angle of a regular polygon?
Awọn alaye Idahun
Ibeere 22 Ìròyìn
The locus of a point equidistant from two points p(6,2) and R(4,2) is a perpendicular bisector of PR passing through
Awọn alaye Idahun
Ibeere 23 Ìròyìn
If logx1/264 = 3, find the value of x
Awọn alaye Idahun
If logx1/264 = 3
(X 1/2)3 = 64
(X 1/2)3 = 4 3
X 1/2 = 4
X = 42
X = 16
Ibeere 24 Ìròyìn
Evaluate (38÷12+12)(18×23+13)
Awọn alaye Idahun
Ibeere 25 Ìròyìn
Find the capacity in liters of a cylindrical well of radius 1 meter and depth 14 meters
[π = 22/7]
Awọn alaye Idahun
V = πr2h
1m = 100cm
14cm = 1400cm
∴V=227×100x100x14001000=44,000liters
Ibeere 26 Ìròyìn
If 1+√21−√2
is expressed in the form of x+y√2 find the values of x and y
Awọn alaye Idahun
Ibeere 28 Ìròyìn
The result of rolling a fair die 150 times is as summarized in the table given.
Number123456Frequency1218x302x45
What is the probability of obtaining a 5?
Awọn alaye Idahun
Number123456Frequency1218x302x45
12 + 18 + x + 30 + 2x + 45 = 150
3x + 105 = 150
3x = 150 - 105
3x = 45
x = 453
x = 15
probability of 5 = 30150
= 15
Ibeere 29 Ìròyìn
If x > 0, find the range of number x-3, 3x+2,x-1, 4x, 2x-1, x-2, 2x-2, 3x and 3x+1
Awọn alaye Idahun
x-3, 3x+2,x-1, 4x, 2x-1, x-2, 2x-2, 3x, 3x+1
Range = 3x+2 - (x-3)
= 3x+2 - x - 3
= 2x + 5
Ibeere 30 Ìròyìn
simplify 16−12×4−12×2713
Awọn alaye Idahun
Ibeere 32 Ìròyìn
In the diagram, find the size of the angle marked ao
Awọn alaye Idahun
2 x s = 280o(Angle at centre = 2 x < at circum)
S = 280o2
= 140
< O = 360 - 280 = 80o
60 + 80 + 140 + a = 360o
(< in a quad); 280 = a = 360
a = 360 - 280
a = 80o
Ibeere 33 Ìròyìn
Make Q the subject of formula when L=43M√PQ
Awọn alaye Idahun
Ibeere 34 Ìròyìn
Find the range of values of x which satisfy the inequalities 4x - 7 ≤ 3x and 3x - 4 ≤ 4x
Awọn alaye Idahun
4X - 7 ≤
3X and 3X - 4 ≤
4X
4X - 3X ≤
7 and 3X - 4X ≤
4
X ≤
7 and -X ≤
4 = X ≥
-4
Range -4 ≤
x ≤
7
Ibeere 35 Ìròyìn
The bar chart above shows the number of times the word a, and , in, it, the , to appear in a paragraph in a book. What is the ratio of the least frequent word?
Awọn alaye Idahun
Ratio of least to most = 3:12
= 3/12
= 1/4
Ibeere 36 Ìròyìn
Find the derivative of y=x7−x5x4
Awọn alaye Idahun
Ibeere 37 Ìròyìn
Evaluate ∫π2−π2cosxdx
Awọn alaye Idahun
∫π2−π2cosxdx=[sinx]π2−π2=sinπ2−sin−π2
= sin90 – sin-90
= sin90 – sin270
= 1 – (-1)
= 1+1
= 2
Ibeere 38 Ìròyìn
If tan θ = 54 find sin2θ - cos2θ
Awọn alaye Idahun
(tan θ
= oppadj
)
|AB|2 = 52 + 42 →
|AB|2 = 41
→
AB = √41
sin2θ
- cos2θ
→
52√41
- (4√412
) = 2541
- 1641
= (941
)
Ibeere 39 Ìròyìn
A binary operation on the real set of numbers excluding -1 is such that for all m, n ∈ R, mΔn = m+n+mn. Find the identity element of the operation.
Awọn alaye Idahun
mΔn = m+n+mn
Let e be the identity element
∴mΔe = eΔm = m
m+e+me = m
e+me = m-m
e+me = 0
e(1+m) = 0
e = 0 / (1+m)
e = 0
Ibeere 40 Ìròyìn
Find the area of the figure given
Awọn alaye Idahun
Area of semicircle + Area of rectangle
A = 12πr2 + LB
A = 12×2277×(52)2+(15×5)
= 12×227×254+75
A = 27528+751
275+210028=237528
A = 84.8cm2
Ibeere 41 Ìròyìn
The probability of picking a letter T fr4om the word OBSTRUCTION is
Awọn alaye Idahun
OBSTRUCTION
Total possible outcome = 11
Number of chance of getting T = 2
P(picking T) = 2/11
Ibeere 42 Ìròyìn
Solve the quadratic inequalities x2 - 5x + 6 ≥0
Awọn alaye Idahun
x2 - 5x + 6 = 0
(X-2)(X-3) = 0
X-2 = 0 implies X = 2
X-3 = 0 implies X = 3
∴ x ≤ 2, x ≥ 3
Ibeere 43 Ìròyìn
Find the median of 4, 1, 4, 1, 0, 4, 4, 2 and 0
Awọn alaye Idahun
Ibeere 45 Ìròyìn
A binary operation * is defined on the set of positive integers is such x*y = 2x-3y+2 for all positive integers x and y. The binary operation is
Awọn alaye Idahun
X * Y = 2X - 3Y + 2
2*3 = 2(2) - 3(3) + 2
=4-9+2
= -3
But -3 does not belong to positive integer
Ibeere 46 Ìròyìn
Find the gradient of a line which is perpendicular to the line with the equation 3x + 2y + 1 = 0
Awọn alaye Idahun
3X + 2Y + 1 = 0
2Y = -3X - 1
−32X−12
Gradient of 3X + 2Y +1 = 0 is -3/2
Gradient of a line perpendicular to 3X + 2Y + 1 = 0
=−1÷32=−1×−23=23
Ibeere 47 Ìròyìn
In the diagram above ∠OPQ is
Awọn alaye Idahun
a = a(base ∠s of Iss Δ)
∴ a+a+74 = 180
2a + 74 = 180
2a = 180-74
2a = 106
a = 53
∴∠OPQ = 53∘
Ibeere 49 Ìròyìn
If 125x = 2010 find x
Awọn alaye Idahun
125x = 20
1xX2 + 2xX1 + 5xX0 = 20
X2 + 2X + 5 = 20
X2 + 2X - 15 = 0
(X + 5)( X - 3) = 0
X + 5 implies X = -5
X - 3 implies X = 3
But X cannot be negative
∴X = 3
Ibeere 50 Ìròyìn
In how many ways can the letters of the word ACCEPTANCE be arranged?
Awọn alaye Idahun
ACCEPTANCE = 10 Letters
A = 2 letters
C = 3 letters
E = 2 letters
Can be arranged in 10! / (2!3!2!) ways
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?