Question 1 Report
If sinx=45 sin x = 4 5 , find 1+cot2xcsc2x−1 1 + cot 2 x csc 2 x − 1 .
Answer Details
sinx=oppHyp=45 sin x = o p p H y p = 4 5 52 2 = 42 2 + adj2 2 adj2 2 = 25 - 16 = 9 adj = √9 9 = 3 tanx=43 tan x = 4 3 cotx=143=34 cot x = 1 4 3 = 3 4 cot2x=(34)2=916 cot 2 x = ( 3 4 ) 2 = 9 16 cscx=1sinx csc x = 1 sin x = 145=54 1 4 5 = 5 4 csc2x=(54)2=2516 csc 2 x = ( 5 4 ) 2 = 25 16 ∴1+cot2xcsc2x−1=1+9162516−1 ∴ 1 + cot 2 x csc 2 x − 1 = 1 + 9 16 25 16 − 1 = 2516÷916 25 16 ÷ 9 16 = 259