The working of the beam balance is based on the principle of moments.
Moments, also known as torques, are a measure of the turning effect of a force. In the case of the beam balance, it is the moments that help determine the equilibrium or balance of the system.
The beam balance consists of a beam or lever that is supported at a pivot point called the fulcrum. On either end of the beam, there are pans where the objects to be weighed are placed.
When objects of different weights are placed on the pans, the beam becomes unbalanced. This causes the beam to tilt towards the side with the heavier object. However, in order to achieve equilibrium or balance, the moments on both sides of the beam must be equal.
The moment of a force is calculated by multiplying the magnitude of the force by the perpendicular distance from the point of rotation (the fulcrum) to the line of action of the force.
By adjusting the position of the counterweights or by moving the objects on the pans, the moment on each side of the beam can be balanced, resulting in the beam becoming level or horizontal. This indicates that the weights on both sides are equal.
Therefore, the beam balance operates on the principle of moments, where the balance is achieved by equalizing the moments on both sides of the fulcrum.