i. value of n
ii. common differences of the sequence.
nC4
= n![n−4]!4!
n[n−1][n−2][n−3][n−4]![n−4]!4!
nC5
= n![n−5]!5!
n[n−1][n−2][n−3][n−4][n−5]![n−5]!5!]
and nC6
= n![n−6]!6!
→ n[n−1][n−2][n−3][n−4][n−5][n−6]![n−6]!6!]
d = U2 - U1 = U3 - U2
nC5
- nC4
= n(n−1)(n−2)(n−3)(n−9)5!
nC6
- nC5
= n(n−1)(n−2)(n−3)(n−4)(n−11)5!6
nC5
- nC4
= nC6
- nC5
n(n−1)(n−2)(n−3)(n−9)5!
= n(n−1)(n−2)(n−3)(n−4)(n−11)5!6
divide both sides by n(n-1)(n-2)(n-3)
n−95!
= [n−4][n−11]5!6
multiply both sides by 5! * 6
6(n-9) = (n-4)(n-11)
6n - 54 = n2
-11n - 4n + 44
6n - 54 = n2
- 15n + 44
n2
- 21n + 98 = 0
n2
- 7n - 14n + 98 = 0
n(n - 7) -14(n - 7) = 0
(n-7)(n-14) = 0
n = 7 or 14
ii.
d = U2 - U1
when n = 7
d = 7C5
- 7C4
d = 7∗6∗5!2!∗5!
- 7∗6∗5∗4!3!∗4!
d = 21 - 35
d = -14
when n = 14
d = 14C5
- 14C4
d = 14∗13∗12∗11∗10∗9!9!∗5!
- 14∗13∗12∗11∗10!10!∗4!
d = 2002 - 1001
d = 1001