Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
The Sulphide which is insoluble in dilute hydrochloric acid is
Answer Details
The sulphide which is insoluble in dilute hydrochloric acid is Copper Sulphide (CuS). When metal sulphides react with hydrochloric acid, they undergo an acid-base reaction to produce hydrogen sulphide gas and the corresponding metal chloride. For example, when Iron Sulphide (FeS) reacts with hydrochloric acid, it forms hydrogen sulphide gas (H2S) and iron chloride (FeCl2) as follows: FeS + 2HCl → H2S + FeCl2 However, Copper Sulphide (CuS) does not react with dilute hydrochloric acid, as it is insoluble in this acid. This is due to the fact that CuS is a much less reactive metal sulphide compared to FeS and ZnS, and therefore it does not undergo an acid-base reaction with dilute hydrochloric acid. In summary, CuS is the sulphide which is insoluble in dilute hydrochloric acid due to its low reactivity with acids.
Question 2 Report
To what temperature must a gas at 273k be heated in order to double both its volume and pressure?
Question 3 Report
If one of the following oxides is heated with hydrogen or carbon using a bunsen burner. it is not reduced to the metal, Which one is it?
Answer Details
The oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner is magnesium oxide. Magnesium oxide is an ionic compound made up of positively charged magnesium ions and negatively charged oxygen ions. When heated with hydrogen or carbon, the oxygen ions are not easily removed from the compound. This is because the ionic bond between the magnesium and oxygen ions is very strong and requires a lot of energy to break. On the other hand, lead oxide, copper oxide, and tin oxide are all metal oxides and can be reduced to the metal by heating with hydrogen or carbon. This is because they have a weaker bond between the metal and oxygen ions, allowing the oxygen to be removed more easily when heated. In conclusion, magnesium oxide is the oxide that cannot be reduced to the metal when heated with hydrogen or carbon using a Bunsen burner.
Question 4 Report
How many atoms are present in 6.0g of magnesium? [Mg = 24, N.A = 6.02 x 10 23 mol]
Answer Details
Question 5 Report
Which of the following produces relatively few ions in solution?
Answer Details
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Question 6 Report
In the preparation of oxygen by heating KCIO, in the presence of MnO2 only moderate heat is needed because the catalyst acts by 2
Answer Details
The presence of MnO2 acts as a catalyst in the reaction of KCIO2 to produce oxygen. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. MnO2 acts by lowering the energy barrier of the reaction, which means it reduces the amount of energy required for the reaction to take place. This makes it easier for the reaction to occur, and thus the reaction proceeds at a faster rate. As a result, only moderate heat is needed to provide the initial energy required for the reaction to start. Therefore, the correct answer is: lowering the energy barrier of the reaction.
Question 7 Report
2KClO3(g) MNO3? 2KCl(s) + 3O2(g)
The importance of the catalyst in the reaction above is that
Question 8 Report
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Answer Details
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Question 9 Report
The figure above shows the electrolysis of molten sodium chloride. Z is the
Answer Details
The figure shows the electrolysis of molten sodium chloride. During electrolysis, an electric current is passed through a molten or dissolved ionic compound to separate the ions. The positive ions move towards the negative electrode (cathode) and the negative ions move towards the positive electrode (anode). In the figure, the electrode connected to the positive terminal of the battery is the anode and the electrode connected to the negative terminal is the cathode. At the anode, the negatively charged chloride ions (Cl-) lose electrons and are oxidized to form chlorine gas (Cl2). At the cathode, the positively charged sodium ions (Na+) gain electrons and are reduced to form liquid sodium metal (Na). Therefore, the answer is (a) anode where the Cl- ions are oxidized. Z is the anode in the figure.
Question 10 Report
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Answer Details
Question 11 Report
A basic postulate of the kinetic theory of gases is that the molecules of a gas move in straight lines between collisions. This implies that
Question 12 Report
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Answer Details
Question 13 Report
The collision theory explains reaction rates in terms of
Answer Details
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Question 14 Report
The alkanoic acid found in human sweat is
Answer Details
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Question 15 Report
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Answer Details
Question 16 Report
H2 S(g) + Cl2(g) → 2HCl(g) + S(g) In the reaction above, the substance that is reduced is
Answer Details
Question 17 Report
ME + nF -----> pG + qH
In the equation shown, the equilibrium constant is given by?
Answer Details
The equilibrium constant for a chemical reaction is a measure of the balance between the reactants and products of a reaction at a particular temperature. The equilibrium constant is given by the ratio of the product of the concentration of the products raised to their stoichiometric coefficients, to the product of the concentration of the reactants raised to their stoichiometric coefficients. In the equation ME + nF -> pG + qH, the correct expression for the equilibrium constant is [G]^p * [H]^q / [E]^m * [F]^n, represented by.
Question 18 Report
The derivative of benzene that can be used in making explosives is
Question 19 Report
The refreshing and characteristic taste of soda water and other soft drinks is as a result of the presence of
Question 20 Report
Calculate the pH of 0.05 moldm?3 H2 SO4
Answer Details
To solve this problem, we need to use the formula for calculating the pH of a solution, which is: pH = -log[H+] where [H+] is the concentration of hydrogen ions in moles per liter. The given chemical equation is: H2SO4 + 2H2O → 2H3O+ + SO42- From this equation, we can see that one molecule of sulfuric acid (H2SO4) can donate two hydrogen ions (H+) to the solution, which means that the concentration of hydrogen ions is twice the concentration of sulfuric acid. Therefore, the concentration of hydrogen ions in this solution is: [H+] = 2 x 0.05 moldm^-3 = 0.1 moldm^-3 Now we can use the formula for pH: pH = -log[H+] pH = -log(0.1) pH = 1.00 Therefore, the pH of the solution is 1.00.
Question 21 Report
When large hydrocarbon molecules are heated at high temperature in the presence of a catalyst to give smaller molecules, the process is known as
Answer Details
The process of breaking down large hydrocarbon molecules into smaller molecules by heating them at high temperatures in the presence of a catalyst is known as cracking. This process is used to convert heavy, high-molecular-weight hydrocarbon molecules into lighter, more valuable products such as gasoline and diesel fuel. The high temperatures cause the large molecules to break apart into smaller ones, and the catalyst helps speed up the reaction. This process is important in the petrochemical industry, as it allows for the production of a wider range of useful products from crude oil.
Question 22 Report
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Question 23 Report
The boiling of fat and aqueous caustic soda is referred to as
Answer Details
The boiling of fat and aqueous caustic soda is referred to as saponification. Saponification is the process of converting fat into soap through a reaction with an alkaline substance, such as caustic soda. The reaction results in the formation of soap (a salt of a fatty acid) and glycerol. This process is important in the manufacture of soap, as it allows the fat to be converted into a useful cleaning product.
Question 24 Report
According to Charles' law, the volume of a gas becomes zero at
Answer Details
Charles' law states that the volume of a gas is directly proportional to its temperature, provided that the pressure remains constant. This means that as the temperature of a gas increases, its volume also increases. However, it is important to note that this law only applies to ideal gases, which are theoretical gases that perfectly follow the laws of thermodynamics. According to Charles' law, the volume of a gas becomes zero at absolute zero, which is approximately -273°C. At this temperature, the gas particles would have no kinetic energy and would be in their lowest energy state. The volume of a real gas would not actually become zero at absolute zero because the gas particles would have some residual intermolecular interactions that would prevent them from completely collapsing to a single point.
Question 26 Report
Which of the following statements is correct about the periodic table?
Answer Details
Question 27 Report
The ionic radii of metals are usually
Answer Details
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 29 Report
Which of the following pairs of substances will react further with oxygen to form a higher oxide?
Answer Details
Question 30 Report
The hydrogen ion concentration of a sample of orange juice is 2.0 X 10−11 moldm−3 . What is its pOH ? [log102 = 0.3010]
Question 31 Report
To what volume must 300cm3 of 0.60M sodium hydroxide solution be diluted to give a 0.40M solution?
Answer Details
Question 32 Report
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment
Answer Details
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment, the litmus will turn red and oxygen gas will be evolved. This is because during electrolysis, the positively charged copper ions (Cu2+) in the copper II sulphate solution are attracted to the negative cathode electrode, where they gain electrons and are reduced to form solid copper. At the same time, the negatively charged sulphate ions (SO42-) are attracted to the positive anode electrode, where they lose electrons and are oxidized to form oxygen gas and water. The litmus added to the anode compartment turns red because of the formation of oxygen gas, which is a highly reactive oxidizing agent that can react with the litmus to cause it to turn red. No hydrogen gas is evolved because hydrogen is produced at the cathode, which is in a separate compartment from the anode where the litmus is added.
Question 33 Report
If the molecular mass of tetraoxosulphate (VI) acid is 98, calculate its vapour density
Question 34 Report
A correct electrochemical series can be obtained from Na, Ca, Al, Mg, Zn, Fe, Pb, H, Cu, Hg, Ag, Au by interchanging
Answer Details
Question 36 Report
2SO2 (g) + O2 (g) ↔ 2SO3 (g) ΔH = -395.7kJmol−1
In the equation, an increase in temperature will shift the equilibrium position to the
Answer Details
Question 37 Report
Methanoic acid mixes with water in all proportions and has about the same boiling point as water. Which of the following methods would you adopt to obtain pure water from a mixture of Sand, water and methanoic acid?
Question 38 Report
The Consecutive members of an alkane homologous series differ by
Answer Details
The consecutive members of an alkane homologous series differ by a CH2 unit. This means that each successive member of the alkane series has one more CH2 unit than the previous member. For example, consider the simplest alkane, methane (CH4). The next member of the series is ethane (C2H6), which differs from methane by one CH2 unit. The next member after that is propane (C3H8), which differs from ethane by another CH2 unit. This pattern continues for all members of the alkane homologous series. The reason for this is that each carbon atom in the alkane chain must be bonded to four other atoms, which are usually hydrogen atoms. This means that each carbon atom in the chain can only bond to one other carbon atom. Therefore, the length of the alkane chain can only increase by adding CH2 units to the end of the chain. In summary, the consecutive members of an alkane homologous series differ by a CH2 unit because this is the only way to add length to the alkane chain while maintaining the required number of bonds for each carbon atom in the chain.
Question 39 Report
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Answer Details
Question 40 Report
Which of the compounds is composed of Al, Si, O and H?
Answer Details
The compound composed of Al, Si, O and H is clay. Clay is a type of sedimentary rock that is made up of very small mineral particles, including hydrated aluminum silicates and other minerals such as quartz and feldspar. These minerals are rich in aluminum, silicon, oxygen, and hydrogen, which gives clay its unique chemical composition. Clay is formed through a process of weathering and erosion of rocks containing these minerals over a long period of time. As water and other natural forces break down the rocks, the mineral particles become suspended in water and are eventually deposited in sedimentary layers. Over time, these layers become compacted and cemented together, forming the solid clay deposits we see today. Therefore, the answer is option C: Clay.
Would you like to proceed with this action?