Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
What is the concentration of a solution containing 2g of NaOH in 100cm3 of solution? [Na = 23, O =16, H = 1]
Answer Details
The concentration of a solution containing 2g of NaOH in 100cm3 of solution is 0.40 moldm-3. This can be calculated by using the formula: molarity (M) = number of moles of solute / volume of solution (in liters) First, we need to calculate the number of moles of NaOH in the solution. The molar mass of NaOH is (23 + 16 + 1) = 40 g/mol. So, 2g of NaOH is equal to 2/40 = 0.05 moles. Next, we need to convert the volume of the solution from cm3 to liters. 1 cm3 = 0.001 liters, so 100 cm3 = 0.1 liters. Finally, we can calculate the molarity as follows: M = 0.05 moles / 0.1 liters = 0.5 mol/L = 0.50 moldm-3 So, the concentration of the solution is 0.50 moldm-3.
Question 2 Report
The end products of burning a candle in the atmosphere are water and
Question 3 Report
The alkanoic acid found in human sweat is
Answer Details
The alkanoic acid found in human sweat is CH3CH2COOH, also known as propionic acid. Sweat is composed of various substances such as water, electrolytes, and waste products. One of these waste products is an oily substance called sebum, which is secreted by the sebaceous glands in the skin. When sebum breaks down, it forms various fatty acids, including propionic acid. Propionic acid has a slightly pungent odor, which is why sweat can sometimes smell sour or cheesy. However, the presence of propionic acid in sweat is actually beneficial, as it has antimicrobial properties that help to prevent the growth of harmful bacteria on the skin. In summary, the alkanoic acid found in human sweat is propionic acid, which is a fatty acid produced when sebum breaks down. Its antimicrobial properties help to keep the skin healthy.
Question 4 Report
The solubility of the solids that dissolves in a given solvent with the liberation of heat will
Answer Details
The solubility of solids in a given solvent is the amount of solid that can dissolve in the solvent to form a solution. When a solid dissolves in a solvent, it releases heat. The solubility of the solid in the solvent can be affected by changes in temperature. Generally, when the temperature of a solution increases, the solubility of the solid in the solvent increases as well. This is because the increased heat energy makes it easier for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will increase with an increase in temperature. On the other hand, if the temperature decreases, the solubility of the solid in the solvent decreases. This is because the decreased heat energy makes it harder for the solid particles to separate and dissolve in the solvent. As a result, the solubility of the solid in the solvent will decrease with a decrease in temperature. In summary, the solubility of solids in a given solvent will generally increase with an increase in temperature and decrease with a decrease in temperature.
Question 5 Report
Which of the following statements is correct about the periodic table?
Answer Details
Question 6 Report
Aluminium does not react with either dilute or concentrated trioxonitrate (V) acid because
Answer Details
Question 8 Report
The constituent common to duralumin and alnico is
Answer Details
The common constituent found in both duralumin and alnico is aluminum (Al). Duralumin is an alloy made up of aluminum, copper, manganese, and magnesium. It is known for its high strength and light weight, making it useful in various applications such as aerospace and construction. Alnico, on the other hand, is an alloy made of aluminum, nickel, cobalt, iron, and small amounts of other elements. It is used in the production of strong permanent magnets for various applications such as in motors, generators, and loudspeakers. So, even though duralumin and alnico have different properties and uses, they both contain the element aluminum.
Question 9 Report
The collision theory explains reaction rates in terms of
Answer Details
The collision theory explains reaction rates in terms of the frequency of collision of the reactants. In other words, the theory suggests that for a chemical reaction to occur, the reactant particles must collide with sufficient energy and with the correct orientation. The frequency of these collisions is an important factor in determining the rate of the reaction. The more frequently the reactant particles collide, the more likely it is that they will react and form products. Therefore, increasing the frequency of collisions between reactant particles can increase the rate of a chemical reaction. The size of the reactants or the products does not play a significant role in the collision theory.
Question 10 Report
Which of the following produces relatively few ions in solution?
Answer Details
The correct answer is AI(OH)3. When ionic compounds dissolve in water, they dissociate into their constituent ions, producing charged particles in solution. The more ions a compound produces, the more conductive it is in solution. AI(OH)3, also known as aluminum hydroxide, produces relatively few ions in solution because it is a weak base. When AI(OH)3 dissolves in water, it releases a small amount of Al3+ and OH- ions. In contrast, NaOH, KOH, and Ca(OH)2 are strong bases that dissociate more completely in water and produce more ions in solution. NaOH and KOH produce one hydroxide ion for every sodium or potassium ion, while Ca(OH)2 produces two hydroxide ions for every calcium ion. Therefore, of the options listed, AI(OH)3 produces relatively few ions in solution.
Question 11 Report
When air which contains the gases Oxygen, nitrogen, carbondioxide, water vapour and the rare gases, is passed through alkaline pyrogallol and then over quicklime, the only gases left are;
Answer Details
Question 12 Report
3H2(g) + N2 ⇔ 2NH3(g) ; H= -ve
In the reaction above, lowering of temperature will
Question 13 Report
A sample of hard water contains some calcium sulphate and calcium hydrogen carbonate. The total hardness may therefore be removed by
Question 14 Report
Which of the following are mixtures?
I. Petroleum
II. Rubber latex
III. Vulcanizer's solution
IV. Carbon sulphide
Answer Details
Question 15 Report
Methanoic acid mixes with water in all proportions and has about the same boiling point as water. Which of the following methods would you adopt to obtain pure water from a mixture of Sand, water and methanoic acid?
Question 16 Report
The radio isotope used in industrial radiography for the rapid checking of faults in welds and casting is?
Question 17 Report
A given amount of gas occupies 10.0dm5 at 4atm and 273°C. The number of moles of the gas present is [Molar volume of gas at s.t.p = 22.4dm3
]
Answer Details
The ideal gas law is PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature. We can use this equation to solve for the number of moles of gas present. First, we need to convert the volume from dm5 to dm3, which is the same as liters (L). So, 10.0 dm5 is equal to 10.0/1000 = 0.01 dm3 or 0.01 L. Next, we need to convert the temperature from Celsius to Kelvin by adding 273 to get 546 K. Now we can plug in the values we have into the ideal gas law: 4 atm x 0.01 L = n x 0.0821 L·atm/K·mol x 546 K Simplifying, we get: 0.04 = n x 44.8 Solving for n, we get: n = 0.04/44.8 = 0.00089 mol Finally, we can compare this value to the molar volume of a gas at standard temperature and pressure (STP), which is 22.4 L/mol. To do this, we need to convert the volume of gas we have to STP conditions. Since the temperature is already at STP (273 K), we just need to adjust the pressure. Using the ideal gas law, we can solve for the volume at STP: 1 atm x V = 0.00089 mol x 0.0821 L·atm/K·mol x 273 K Simplifying, we get: V = 0.0224 L or 22.4 dm3 Therefore, the amount of gas present is equal to 0.00089 mol, which is less than 1 mol. So the answer is 0.89 mol.
Question 18 Report
Calculate the percentage composition of oxygen in calcium trioxocarbonate(IV) [Ca=40, C=12, O=16]
Answer Details
To calculate the percentage composition of oxygen in calcium trioxocarbonate(IV), we first need to determine the molar mass of the compound. The compound has one calcium atom (Ca), one carbon atom (C), and three oxygen atoms (O). So, the molar mass of calcium trioxocarbonate(IV) can be calculated as follows: Molar mass = (1 × atomic mass of Ca) + (1 × atomic mass of C) + (3 × atomic mass of O) = (1 × 40) + (1 × 12) + (3 × 16) = 40 + 12 + 48 = 100 g/mol Next, we need to determine the mass of oxygen in one mole of calcium trioxocarbonate(IV). The compound has three oxygen atoms, each with an atomic mass of 16 g/mol. Therefore, the total mass of oxygen in one mole of the compound is: Mass of oxygen = 3 × 16 = 48 g/mol Finally, to determine the percentage composition of oxygen in calcium trioxocarbonate(IV), we divide the mass of oxygen by the molar mass of the compound and multiply by 100. Percentage of oxygen = (Mass of oxygen / Molar mass of compound) × 100 = (48 / 100) × 100 = 48% Therefore, the correct answer is 48, which represents the percentage composition of oxygen in calcium trioxocarbonate(IV).
Question 19 Report
Which of the following is used to power steam engines?
Answer Details
Coal is the fuel that is typically used to power steam engines. Coal is burned in a furnace to heat water and produce steam, which is then used to power a steam engine. The steam engine converts the energy from the steam into mechanical energy, which can be used to power machines or generate electricity. Coal is a fossil fuel that has been used for centuries as a source of energy, and it played a significant role in the industrial revolution, powering steam engines that were used to drive machines in factories and transport goods and people by train. Today, steam engines are less common as other forms of energy have taken their place, but they remain an important part of our history and technological development.
Question 21 Report
Which of the following separation techniques can be employed in obtaining solvent from its solution?
Answer Details
The separation technique that can be employed in obtaining a solvent from its solution is evaporation. Evaporation is a process that involves heating a solution to vaporize the solvent, leaving behind the solute. The vaporized solvent can then be condensed and collected as a pure liquid. This technique is commonly used in industry and laboratory settings to recover solvents from solutions, as it is a simple and effective way to purify liquids. Distillation can also be used to separate a solvent from a solution, but it is a more complex process that involves boiling the solution and then condensing the vapors in a separate apparatus. Filtration and precipitation are not suitable for separating a solvent from a solution, as they are primarily used to separate solid particles from a liquid mixture.
Question 22 Report
The ionic radii of metals are usually
Answer Details
The ionic radii of metals are usually smaller than their atomic radii. The size of an atom is determined by the distance between the nucleus and the outermost electrons, which is known as the atomic radius. When a metal atom loses one or more electrons to form a positive ion (or cation), the resulting ion has a smaller size than the original atom. This is because the positive charge of the ion attracts the remaining electrons closer to the nucleus, making the ion smaller in size. So, when a metal forms a cation, its ionic radius is typically smaller than its atomic radius. This is a general trend in the periodic table, although there are some exceptions.
Question 23 Report
The presence of ammonia gas in a desiccator can exclusively be removed by
Answer Details
Question 24 Report
To what volume must 300cm3 of 0.60M sodium hydroxide solution be diluted to give a 0.40M solution?
Answer Details
Question 25 Report
The Sulphide which is insoluble in dilute hydrochloric acid is
Answer Details
The sulphide which is insoluble in dilute hydrochloric acid is Copper Sulphide (CuS). When metal sulphides react with hydrochloric acid, they undergo an acid-base reaction to produce hydrogen sulphide gas and the corresponding metal chloride. For example, when Iron Sulphide (FeS) reacts with hydrochloric acid, it forms hydrogen sulphide gas (H2S) and iron chloride (FeCl2) as follows: FeS + 2HCl → H2S + FeCl2 However, Copper Sulphide (CuS) does not react with dilute hydrochloric acid, as it is insoluble in this acid. This is due to the fact that CuS is a much less reactive metal sulphide compared to FeS and ZnS, and therefore it does not undergo an acid-base reaction with dilute hydrochloric acid. In summary, CuS is the sulphide which is insoluble in dilute hydrochloric acid due to its low reactivity with acids.
Question 26 Report
At what temperature is the solubility of potassium trioxonitrate(V ) equal to that of sodium trioxonitrate (V)?
Answer Details
Question 27 Report
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as;
Answer Details
The reaction between an organic acid and an alcohol in the presence of an acid catalyst is known as esterification. Esterification is the process of forming an ester, which is a type of organic compound, from an alcohol and an acid. The acid catalyst is used to speed up the reaction by providing a proton to the reaction mixture, which helps to form the ester. Esterification results in the loss of a water molecule from the reaction mixture, which makes the reaction a type of dehydration reaction. However, it is important to note that esterification is a specific type of dehydration reaction where the products are an ester and an alcohol. So, the answer is esterification.
Question 28 Report
What mass of Cu would be produced by the cathodic reduction of Cu2+ when 1.60A of current passes through a solution of CuSO4 for 1 hour. (F=96500Cmol−1 , Cu=64)
Answer Details
The reduction reaction that occurs at the cathode during the electrolysis of CuSO4" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-1-Frame">4, is: Cu2+" tabindex="0" class="mjx-chtml MathJax_CHTML" id="MathJax-Element-2-Frame">2+ + 2e- -> Cu(s) From this, we can see that each Cu2+ ion requires two electrons to be reduced to copper metal. Given the current (I = 1.60 A), time (t = 1 hour = 3600 s), and Faraday's constant (F = 96500 C/mol), we can calculate the total amount of charge that passes through the solution: Q = I*t = 1.60 A * 3600 s = 5760 C Using Faraday's law, we can relate the amount of charge that passes through the solution to the number of moles of electrons transferred during the reduction reaction: n = Q/F = 5760 C / 96500 C/mol = 0.0597 mol e- Since each Cu2+ ion requires 2 electrons to be reduced to copper metal, the number of moles of copper produced is half the number of moles of electrons transferred: mol Cu = 0.0597 mol e- / 2 = 0.0299 mol Cu Finally, we can convert the moles of copper produced to grams using the molar mass of copper: mass Cu = 0.0299 mol Cu * 64 g/mol = 1.91 g Therefore, the answer is 1.91 g of Cu produced. is correct.
Question 29 Report
In the upper atmosphere, the ultra-violet light breaks off a free chlorine atom from chlorofluorocarbon molecule. The effect of this is that the free chlorine atom will
Answer Details
The free chlorine atom that breaks off from a chlorofluorocarbon molecule will be very reactive and will attack ozone in the upper atmosphere. Ozone is a molecule made up of three oxygen atoms, and when the free chlorine atom reacts with ozone, it breaks the ozone molecule into two separate oxygen molecules. This reaction reduces the amount of ozone in the atmosphere, which is known as ozone depletion. Over time, this can lead to a thinning of the ozone layer, which protects life on Earth from harmful ultraviolet radiation from the sun.
Question 30 Report
The choice of method for extracting a metal from its ores depends on the
Answer Details
The choice of method for extracting a metal from its ores depends on the position of the metal in the electrochemical series. The electrochemical series is a list of metals arranged in order of their ability to gain or lose electrons. The metals at the top of the series (such as sodium and potassium) are very reactive and will readily lose electrons, while those at the bottom (such as gold and platinum) are less reactive and less likely to lose electrons. The position of a metal in the electrochemical series determines the method of extraction that should be used. For example, metals at the top of the series are usually extracted by electrolysis, which involves passing an electric current through a molten compound of the metal. This process is necessary because the metals at the top of the series are very reactive and are strongly bonded to other elements in their ores. On the other hand, metals at the bottom of the series are usually extracted by reduction with carbon or hydrogen. This is because these metals are less reactive and can be separated from their ores by reacting them with a reducing agent that can take away the oxygen and other impurities. Therefore, the position of the metal in the electrochemical series is a crucial factor in determining the method of extraction that should be used to extract it from its ores.
Question 32 Report
2SO2 (g) + O2 (g) ↔ 2SO3 (g) ΔH = -395.7kJmol−1
In the equation, an increase in temperature will shift the equilibrium position to the
Answer Details
Question 33 Report
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment
Answer Details
During the electrolysis of copper II sulphate between platinum electrodes, if litmus solution is added to the anode compartment, the litmus will turn red and oxygen gas will be evolved. This is because during electrolysis, the positively charged copper ions (Cu2+) in the copper II sulphate solution are attracted to the negative cathode electrode, where they gain electrons and are reduced to form solid copper. At the same time, the negatively charged sulphate ions (SO42-) are attracted to the positive anode electrode, where they lose electrons and are oxidized to form oxygen gas and water. The litmus added to the anode compartment turns red because of the formation of oxygen gas, which is a highly reactive oxidizing agent that can react with the litmus to cause it to turn red. No hydrogen gas is evolved because hydrogen is produced at the cathode, which is in a separate compartment from the anode where the litmus is added.
Question 34 Report
What is the PH of 0.00 1 moldm3 solution of the sodium hydroxide
Question 35 Report
The salt that reacts with dilute hydrochloric acid to produce a pungent smelling gas which decolourizes acidified purple potassium tetraoxomanganate (VII) solution is
Answer Details
Question 36 Report
The knowledge of half-life can be used to
Question 37 Report
The periodic classification is an arrangement of the elements
Answer Details
The periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that lists all the known chemical elements in order of increasing atomic number, arranged in rows and columns according to their electronic structure and chemical properties. The atomic number of an element is the number of protons in the nucleus of an atom of that element. Each element has a unique atomic number, which determines its position in the periodic table. The elements are arranged in rows called periods, and in columns called groups or families. Elements in the same group have similar properties because they have the same number of valence electrons, which are the electrons in the outermost shell of the atom. The periodic table is an incredibly useful tool for chemists because it allows them to predict the properties of elements based on their position in the table. For example, elements in the same group tend to form similar compounds, so if you know the properties of one element in a group, you can often predict the properties of the other elements in that group. In summary, the periodic classification is an arrangement of the elements based on their atomic numbers. The periodic table is a chart that organizes the elements into rows and columns based on their electronic structure and chemical properties, allowing scientists to make predictions about the behavior of the elements based on their position in the table.
Question 38 Report
Diamond is a bad conductor of electricity because its bonding electrons are used in
Answer Details
Diamond is a bad conductor of electricity because of its unique structure and bonding. The carbon atoms in diamond form a covalent network, where each carbon atom is bonded to four other carbon atoms. These bonds are strong and hold the atoms in a rigid three-dimensional structure called a crystal lattice. In a covalent bond, atoms share electrons to form a stable compound. In diamond, each carbon atom shares its valence electrons with four neighboring carbon atoms, forming a very strong covalent bond. All the valence electrons in the crystal lattice are used in covalent bond formation, which means there are no free or mobile electrons to carry an electric current. In other words, the electrons are tightly held in the covalent bonds, making it difficult for them to move around the crystal lattice and conduct electricity. In contrast, metals conduct electricity well because they have delocalized or free electrons that can move through the lattice of positively charged ions. So, diamond, being a covalent network solid, does not have free electrons that can carry an electric current, which is why it is a bad conductor of electricity.
Question 39 Report
In the preparation of oxygen by heating KCIO, in the presence of MnO2 only moderate heat is needed because the catalyst acts by 2
Answer Details
The presence of MnO2 acts as a catalyst in the reaction of KCIO2 to produce oxygen. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction itself. MnO2 acts by lowering the energy barrier of the reaction, which means it reduces the amount of energy required for the reaction to take place. This makes it easier for the reaction to occur, and thus the reaction proceeds at a faster rate. As a result, only moderate heat is needed to provide the initial energy required for the reaction to start. Therefore, the correct answer is: lowering the energy barrier of the reaction.
Question 40 Report
The general formula of alkanones is
Would you like to proceed with this action?