Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
The removal of rust from iron by treatment with tetraoxosulphate (vi) acid is based on the
Answer Details
Question 2 Report
The following non-metal form acidic oxides with oxygen except?
Answer Details
An acidic oxide is an oxide that reacts with water to form an acidic solution. Non-metals have a greater tendency to form acidic oxides than metals. Therefore, among the given options, the non-metal that does not form an acidic oxide with oxygen would be the one that does not react with water to form an acidic solution. Out of the given options, chlorine is the non-metal that does not form acidic oxides with oxygen. Chlorine reacts with oxygen to form a number of oxides such as chlorine monoxide (Cl2O), chlorine dioxide (ClO2), and chlorine trioxide (ClO3), but none of these oxides react with water to form an acidic solution. Instead, they react with water to form oxyacids or oxoacids such as hypochlorous acid (HClO), chlorous acid (HClO2), and chloric acid (HClO3), which are stronger acids than the oxides. Therefore, the correct answer is chlorine.
Question 3 Report
Complete dehydrogenation of ethyne yields
Question 4 Report
Zn + 2HCL → ZnCl2 + H2
What happens to zinc in the above reaction?
Answer Details
In the above reaction, zinc (Zn) reacts with hydrochloric acid (HCl) to form zinc chloride (ZnCl2) and hydrogen gas (H2). The chemical equation for the reaction is: Zn + 2HCl → ZnCl2 + H2 During the reaction, zinc atoms lose two electrons each and get oxidized to form positively charged zinc ions (Zn2+), as they react with the hydrogen ions (H+) from the hydrochloric acid to form zinc chloride. The hydrogen ions, on the other hand, gain an electron each and get reduced to form hydrogen gas molecules (H2). Therefore, in the given reaction, zinc is getting oxidized, as it loses electrons and forms a positively charged ion. Hence, the correct option is "oxidized."
Question 5 Report
Which of the following constitutes a mixture? I. Petroleum II. Rubber latex III. Vulcanizer’s solution IV. Carbon (iv) sulphide
Answer Details
Question 6 Report
The pollutant usually presents in a city which generates its electricity from coal?
Answer Details
The pollutant that is usually present in a city that generates its electricity from coal is sulfur dioxide (SO2), also known as sulfur(iv)oxide. When coal is burned to generate electricity, sulfur compounds in the coal are released into the air as SO2. This gas can react with other pollutants and atmospheric conditions to form smog, which can be harmful to human health and the environment. Therefore, it is important to reduce the use of coal in electricity generation and promote cleaner and more sustainable energy sources to reduce the levels of SO2 and other harmful pollutants in the air.
Question 7 Report
A sample of gas with an initial volume of 2.5 dm3 is heated and then allowed to expand to 7.5 dm3 at constant at pressure. What is the ratio of the final temperature of the initial absolute temperature?
Answer Details
According to Charles's Law, the ratio of the initial and final temperatures is equal to the ratio of the initial and final volumes at constant pressure. The ratio of the final volume to the initial volume is: Vf / Vi = 7.5 dm3 / 2.5 dm3 = 3 Therefore, the ratio of the final temperature to the initial temperature is also 3: Tf / Ti = Vf / Vi = 3 So the answer is 3:1.
Question 8 Report
Chlorine is a common bleaching agent. This is not true with
Answer Details
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Question 9 Report
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Question 10 Report
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Answer Details
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Question 11 Report
A piece of radioactive element has initially 8.0×10^22 atoms. The half life of two days after 16 days the number of atom is
Question 12 Report
Addition of sodium chloride to water to form a solution would lead to?
Answer Details
The addition of sodium chloride to water to form a solution would lead to a decrease in freezing point and an increase in boiling point. This effect is known as colligative properties, which depend on the concentration of solute particles in a solution. When sodium chloride dissolves in water, it breaks down into sodium ions and chloride ions. These ions occupy space between water molecules and interfere with the formation of ice crystals during freezing. As a result, the freezing point of the solution is lowered below that of pure water. This is why we use salt to de-ice roads and sidewalks during the winter season. Similarly, the presence of solute particles in a solution also raises the boiling point of the solution. The increased concentration of solute particles in the solution causes a decrease in the vapor pressure of the solvent (water), making it harder for the solvent molecules to escape into the gas phase. This means that more energy is required to bring the solution to its boiling point compared to pure water. In summary, the addition of sodium chloride to water forms a solution with lower freezing point and higher boiling point compared to pure water.
Question 13 Report
One of the active components of baking powder is
Answer Details
The active component of baking powder is sodium bicarbonate (NaHCO3). It is responsible for the leavening or rising of baked goods by releasing carbon dioxide gas when it reacts with an acid. Other ingredients in baking powder, such as monocalcium phosphate and sodium aluminum sulfate, provide the acid component for the reaction to occur. Magnesium sulfate (MgSO4) and calcium sulfate (CaSO4) are not typically used in baking powder, and sodium chloride (NaCl) is simply table salt and not an active ingredient in leavening.
Question 15 Report
A certain volume of gas at 298k is heated such that its volume and pressure are now four times the original values. What is the new temperature?
Answer Details
We can use the ideal gas law to solve this problem, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in kelvin. If the volume and pressure are both increased by a factor of 4, then the new volume V' and new pressure P' are given by: V' = 4V P' = 4P Substituting these values into the ideal gas law, we get: (4P)(4V) = nR(T') Simplifying this equation, we get: 16PV = nRT' Dividing both sides by PV, we get: 16 = nRT' / PV Since n, R, and P are constant, we can simplify this to: 16 = T' / T Solving for T', we get: T' = 16T Therefore, the new temperature is 16 times the original temperature. Substituting T = 298 K, we get: T' = 16 x 298 K = 4768 K So the correct answer is 4768.0K.
Question 16 Report
The oxidation number of oxygen in BaO2 is
Answer Details
To determine the oxidation number of oxygen in BaO2, we can use the fact that the overall charge of a compound must be zero. Barium (Ba) is a Group 2 element and has an oxidation state of +2. The compound BaO2 has no net charge, so the sum of the oxidation states of all the atoms must be zero. Let x be the oxidation state of oxygen in BaO2. Therefore, we have: (+2) + 2(x) = 0 Solving for x, we get: x = -1 Therefore, the oxidation number of oxygen in BaO2 is -1.
Question 17 Report
Which of the following conducts electricity
Answer Details
Graphite is the option that conducts electricity.
Question 18 Report
In the extraction of iron, hot air is introduced into the blast furnace through?
Answer Details
In the extraction of iron, hot air is introduced into the blast furnace through tuyeres. Tuyeres are nozzles that are located at the bottom of the blast furnace, and they are used to blow hot air into the furnace. The hot air helps to burn the coke (a fuel made from coal) which provides the heat needed to melt the iron ore. The air also helps to remove the waste gases that are produced during the reaction, allowing the iron to be extracted more efficiently.
Question 19 Report
Copper (II) tetraoxosulphate (IV) is widely used as
Answer Details
Copper (II) tetraoxosulphate (IV), also known as copper sulfate or CuSO4, is widely used as a fungicide and a disinfectant. As a fungicide, copper sulfate is effective in controlling fungal diseases in plants, including mildew, leaf spots, and blights. It is also used as a fungicide in swimming pools to prevent the growth of algae. As a disinfectant, copper sulfate is effective in killing bacteria and viruses. It is used in a variety of applications, including in the production of animal feed, as a preservative for wood, and in water treatment to kill bacteria and algae. While copper sulfate has been used as a fertilizer in the past, its use in this capacity has largely been replaced by other compounds. It is not commonly used as a purifier.
Question 20 Report
Mixing aqueos solution of barium hydroxide and sodium tetraoxocarbonate (iv) yields a white precipitate of
Answer Details
Mixing aqueous solutions of barium hydroxide and sodium tetraoxocarbonate (IV) would result in a chemical reaction that produces a white precipitate of barium tetraoxocarbonate (IV). The balanced chemical equation for this reaction is: Ba(OH)2(aq) + Na2CO3(aq) → BaCO3(s) + 2NaOH(aq) In the above equation, the barium hydroxide (Ba(OH)2) reacts with sodium tetraoxocarbonate (IV) (Na2CO3) to form barium tetraoxocarbonate (IV) (BaCO3), which is a white precipitate, and sodium hydroxide (NaOH). Therefore, the correct option is 4) Barium tetraoxocarbonate.
Question 21 Report
Which of the following roles does sodium chloride play in preparation? It
Answer Details
The role that sodium chloride (NaCl) plays in soap preparation is to separate soap from glycerol. When fats or oils are hydrolyzed with an alkali, such as sodium hydroxide (NaOH), the result is a mixture of soap and glycerol. Adding NaCl to this mixture helps to induce the precipitation of the soap, allowing it to be separated from the glycerol. This process is known as "salting out" and is used to purify the soap and remove impurities. Sodium chloride does not react with glycerol or accelerate the decomposition of fat and oil. Also, it does not convert the fatty acid to its sodium salt as this conversion is done by the alkali (such as NaOH) during the saponification process.
Question 22 Report
An organic functional group which can likely decolorize ammoniacal silver nitrate is?
Answer Details
The organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne. When ammoniacal silver nitrate is added to a solution containing an alkyne functional group, a white or yellowish precipitate of silver acetylide is formed. Silver acetylide is a highly explosive compound and is sparingly soluble in water, causing it to appear as a white or yellowish solid precipitate. This reaction is used as a test to detect the presence of an alkyne functional group in an organic compound. In contrast, alkanes, alkenes, and alkanols do not react with ammoniacal silver nitrate, so they cannot decolorize it. Therefore, an organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne.
Question 23 Report
H2SO4 is used to remove rust on the surface of iron (picking) before electroplating. The type of reaction involved is
Answer Details
The type of reaction involved when using H2SO4 to remove rust on the surface of iron is a redox reaction. This is because the sulfuric acid oxidizes the iron in the rust, converting it into iron(II) sulfate, while the acid itself is reduced to sulfur dioxide. The overall reaction can be written as follows: Fe2O3(s) + 3H2SO4(aq) → Fe2(SO4)3(aq) + 3H2O(l) In this reaction, the iron in Fe2O3 is oxidized from a +3 to a +2 oxidation state, while the sulfur in H2SO4 is reduced from a +6 to a +4 oxidation state. This transfer of electrons between the reactants is what defines a redox reaction.
Question 24 Report
30 cm3 of oxygen at 10 atmosphere pressure is placed in a 20 dm3 container. Calculate the new pressure if the temperature is kept constant.
Answer Details
Given:
First, convert all volumes to the same units. Since 1 dm3dm3 is 1000 cm3cm3:
𝑉2=20 dm3=20×1000 cm3=20000 cm3V2=20dm3=20×1000cm3=20000cm3
Now, using Boyle's Law:
𝑃1𝑉1=𝑃2𝑉2P1V1=P2V2
Substitute the known values into the equation:
10×30=𝑃2×2000010×30=P2×20000
300=𝑃2×20000300=P2×20000
Solve for 𝑃2P2:
𝑃2=30020000P2=20000300
𝑃2=0.015 atmospheresP2=0.015atmospheres
Therefore, the new pressure if the temperature is kept constant is:
Question 25 Report
The function of sulphur during the vulcanization of rubber is to
Answer Details
The function of sulphur during the vulcanization of rubber is to form chains which bind rubber molecules together.
Question 26 Report
The IUPAC nomenclature of the structure is
Answer Details
The IUPAC nomenclature of the structure is "2-chloro-2-methylbutane". The name is derived by first identifying the longest carbon chain, which in this case contains four carbon atoms (butane). The carbon chain is numbered from one end to the other, giving the substituents the lowest possible numbers. Starting from either end, we can see that the first carbon atom has a chlorine atom attached to it, which is represented by the prefix "chloro-". Moving along the chain, the second carbon atom has a methyl group attached to it, which is represented by the prefix "methyl-". Since the substituents are in the second position from each other, we use the prefix "di-" to indicate two substituents in this position. Finally, we use the suffix "-ane" to indicate that the molecule is an alkane. Therefore, the correct name for this molecule is "2-chloro-2-methylbutane".
Question 27 Report
Crude petroleum is converted to useful products by the process of?
Answer Details
The process of converting crude petroleum into useful products is known as fractional distillation. Crude petroleum is a mixture of different hydrocarbons, and fractional distillation separates these hydrocarbons based on their boiling points. During the process of fractional distillation, crude petroleum is heated to a high temperature, and the resulting vapors are passed through a tower called a fractionating column. This column contains a series of trays, and each tray contains a specific temperature range. As the vapors rise up the column, they cool and condense into liquids on the tray with a temperature that matches their boiling point. The liquids are then collected and further refined into useful products like gasoline, diesel, jet fuel, and heating oil. Fractional distillation is an important process because it allows us to separate and purify the different components of crude petroleum, which have different properties and uses. For example, gasoline has a lower boiling point and is more volatile than diesel fuel, which makes it ideal for use in cars. By separating these components, we can create products that meet specific needs and requirements.
Question 28 Report
Which of the following is stable to heat
Answer Details
Out of the given options, K2CO3 is stable to heat.
Question 29 Report
A metal which can be used as sacrificial anode for preventing corrosion of length of iron pipe is
Answer Details
Question 30 Report
Ethene, when passed into concentrated H2SO4, is rapidly absorbed. The product is diluted with water and then warmed to produce
Answer Details
When ethene is passed into concentrated H2SO4, it undergoes electrophilic addition reaction to form ethyl hydrogen sulfate as the product. The reaction mixture is then diluted with water and warmed to produce ethanol as the main product. Therefore, the answer is ethanol.
Question 31 Report
2H2 + O2 → 2H2 O
From the equation above, calculate the volume of unreacted oxygen gas if a mixture of 50cm3 of hydroden and 75cm3 of oxygen are involved
Answer Details
The balanced chemical equation shows that 2 moles of hydrogen gas react with 1 mole of oxygen gas to produce 2 moles of water vapor. Therefore, the stoichiometric ratio of hydrogen to oxygen is 2:1. In this problem, there are 50cm3 of hydrogen gas and 75cm3 of oxygen gas. Since the gases are at the same temperature and pressure, their volumes are directly proportional to the number of moles of gas present. Using the stoichiometric ratio, we can calculate that the amount of oxygen gas required to react completely with 50cm3 of hydrogen gas is (1/2) * 50cm3 = 25cm3. Since there are 75cm3 of oxygen gas present, there must be (75cm3 - 25cm3) = 50cm3 of unreacted oxygen gas remaining. Therefore, the volume of unreacted oxygen gas is 50cm3. Answer: 50cm3
Question 32 Report
In the preparation of salts, the method employed will depend on the?
Answer Details
The method employed in the preparation of salts will depend on the composition of the salt. Different salts have different chemical properties, and the method used to prepare them will depend on these properties. For example, some salts can be easily dissolved in water, while others are not very soluble and may require the use of a different solvent or special conditions to dissolve. The dissociating ability, stability to heat, and precipitating ability of the salt may also play a role in determining the preparation method, but the most important factor is the composition of the salt.
Question 33 Report
Which of the following will precipitate in dil. HCl
Answer Details
Among the given options, only CuS will precipitate in dilute HCl. CuS is insoluble in dilute HCl, and hence it will precipitate when added to dilute HCl. However, the other options will dissolve in dilute HCl, and hence they will not precipitate. ZnS will dissolve in dilute HCl to form ZnCl2 and H2S. Na2S will react with dilute HCl to produce H2S and NaCl. FeS will dissolve in dilute HCl to form FeCl2 and H2S. Therefore, the correct answer is (4) CuS.
Question 34 Report
There is a large temperature interval between the melting point and the boiling point of metal because:
Answer Details
The correct answer is: "melting does not break the metallic bond but boiling does." The metallic bond is the force of attraction between metal atoms, which holds them together to form a solid. When a metal is heated, its temperature increases, and at a certain point, the energy provided by the heat is enough to overcome the metallic bond and cause the metal to melt. However, even in the liquid state, the metallic bond remains intact, which is why metals have a very high melting point. On the other hand, when the temperature is further increased, the energy provided by the heat becomes enough to break the metallic bond, and the metal atoms become completely detached from one another. This results in the metal boiling and turning into a gas. Because the metallic bond is much stronger than other types of intermolecular forces, such as van der Waals forces, it requires a lot of energy to break, resulting in a large temperature interval between the melting point and boiling point of metal.
Question 35 Report
An organic compound decolourized acidified KMnO4 solution but failed to react with ammonical AgNO3 solution. The organic compound is likely?
Answer Details
The given information suggests that the organic compound is an unsaturated compound (because it decolorized the acidified KMnO4 solution), but it does not contain a functional group that reacts with ammonical AgNO3 solution. Therefore, the likely organic compound is an alkene or an alkyne. Carboxylic acids can also react with acidified KMnO4 solution, but they would also react with ammonical AgNO3 solution to form a silver carboxylate salt. Alkanes are saturated compounds and do not react with either reagent, so they would not decolorize the acidified KMnO4 solution. Therefore, based on the given information, the most likely option is either an alkene or an alkyne.
Question 36 Report
Which of the following compound is NOT the correct formed compound when the parent metal is heated in air?
Answer Details
The compound that is NOT correctly formed when the parent metal is heated in air is: tri-iron tetraoxide (Fe2O). This is because the correct compound formed from the heating of iron in air is iron (III) oxide or Fe2O3. The formula for tri-iron tetraoxide is incorrect, as it implies that there are only three iron atoms in the compound when there should be four.
Question 37 Report
The dehydration of CH3 CH2 CH2 CH2 OH will give?
Question 38 Report
A certain liquid has a high boiling point. It is viscous, non-toxic, and miscible with water to be hygroscopic; this liquid most likely to be
Answer Details
The liquid is most likely to be option number 4: CH3OHCHOH2OH, which is also known as glycerol or glycerin. Glycerol has a high boiling point of 290°C, which is much higher than the boiling points of the other options. It is also a viscous liquid, which means it is thick and sticky. Glycerol is non-toxic, and it is often used in food, pharmaceuticals, and cosmetics. Furthermore, glycerol is miscible with water, which means that it can be easily mixed with water to form a homogeneous solution. It is also hygroscopic, which means that it can absorb water from the air. These properties make glycerol a useful substance in many applications, such as as a moisturizer in skincare products or as a humectant in food processing.
Question 39 Report
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Question 40 Report
In order to electroplate spoon with silver, the arrangement of the electrolytic cell is?
Answer Details
Would you like to proceed with this action?