Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
N2 O4 ? 2NO2 (? = -ve)
From the reaction above, which of these conditions would produce the highest equilibrium yield for N2 O4 ?
Answer Details
The highest equilibrium yield of N2O4 would be produced at low temperature and low pressure. In a chemical reaction, the position of the equilibrium can be influenced by changing the temperature or pressure. A decrease in temperature or an increase in pressure favors the side of the reaction with the fewer moles of gas (in this case, N2O4). This means that, if the temperature is low and the pressure is low, there will be more N2O4 at equilibrium, as the reaction will shift to the right to counteract the reduction in the concentration of N2O4. So, low temperature and low pressure would produce the highest equilibrium yield of N2O4.
Question 2 Report
Which of the following increases as boiling water changes to steam?
Answer Details
The degree of disorder of the system increases as boiling water changes to steam. When water is boiled and changes to steam, the water molecules gain energy and become more disordered, which means that the molecules move more rapidly and the entropy of the system increases. The temperature of the system also increases during this process, but the degree of disorder is the factor that specifically increases as the water changes to steam. The number of molecules and activation energy remain constant during this phase transition.
Question 3 Report
Alkanes are used mainly?
Question 4 Report
Using the metal activity series, the metal that can liberate hydrogen gas from steam is?
Answer Details
The metal that can liberate hydrogen gas from steam is iron. The metal activity series is a list of metals in order of their reactivity, with the most reactive metals at the top and the least reactive metals at the bottom. When a metal is placed in a solution of steam (water vapor), the metal will react with the steam if it is more reactive than hydrogen. In this case, iron is more reactive than hydrogen, so it can displace hydrogen from the steam to form hydrogen gas. This reaction can be represented by the equation: Fe + H2O (steam) → FeO (iron oxide) + H2 (hydrogen gas) So, when steam is passed over iron, hydrogen gas is liberated and iron oxide is formed.
Question 5 Report
Which of the following is used as a moderator to control nuclear fission?
Answer Details
Heavy water (D2O) is used as a moderator to control nuclear fission. A moderator is a substance that is used to slow down the neutrons produced in a nuclear reaction, making them more likely to be captured by the fuel nuclei and causing further fission. Heavy water is a type of water that contains a larger amount of the isotope deuterium (D) than regular water. Deuterium has an extra neutron compared to the more common hydrogen isotope, and this makes heavy water more effective at slowing down neutrons than regular water. Lead, iron, and chromium are not typically used as moderators in nuclear reactors. Lead can be used as a shield to absorb radiation, while iron and chromium are used in the construction of the reactor vessel and other components.
Question 6 Report
On the basis of the electrochemical series, which of these ions will show the greater tendency to be discharged at the cathode in an electrolytic cell
Answer Details
The electrochemical series is a list of metals and ions arranged in order of their decreasing tendency to lose or gain electrons, and thus, their ability to act as reducing or oxidizing agents. The higher the position of a metal or ion in the electrochemical series, the greater its tendency to lose electrons and undergo oxidation, while the lower its position, the greater its tendency to gain electrons and undergo reduction. In an electrolytic cell, the cathode is the electrode where reduction occurs, meaning that cations (positively charged ions) are attracted and gain electrons to form neutral atoms or molecules. Based on the electrochemical series, the ion with the higher position in the series will have a greater tendency to gain electrons and be discharged at the cathode, while the ion with the lower position will have a lower tendency and may not be discharged at all. Among the given options, the electrochemical series order is: Cu2+ > Sn2+ > Fe2+ > Zn2+ Therefore, Cu2+ has the highest tendency to be discharged at the cathode and undergo reduction, while Zn2+ has the lowest tendency. So, in an electrolytic cell, Cu2+ will be discharged at the cathode, while Zn2+ may not be discharged at all, depending on the conditions of the cell.
Question 7 Report
What is the shape of a molecule of CCl4?
Answer Details
The shape of a molecule of CCl4 is tetrahedral.
Question 8 Report
A metal which can be used as sacrificial anode for preventing corrosion of length of iron pipe is
Answer Details
Question 9 Report
H2SO4 is used to remove rust on the surface of iron (picking) before electroplating. The type of reaction involved is
Answer Details
The type of reaction involved when using H2SO4 to remove rust on the surface of iron is a redox reaction. This is because the sulfuric acid oxidizes the iron in the rust, converting it into iron(II) sulfate, while the acid itself is reduced to sulfur dioxide. The overall reaction can be written as follows: Fe2O3(s) + 3H2SO4(aq) → Fe2(SO4)3(aq) + 3H2O(l) In this reaction, the iron in Fe2O3 is oxidized from a +3 to a +2 oxidation state, while the sulfur in H2SO4 is reduced from a +6 to a +4 oxidation state. This transfer of electrons between the reactants is what defines a redox reaction.
Question 10 Report
The reactions below represent neutralization reaction, in which of them is the value of ΔH highest?
Answer Details
The reaction with the highest ΔH (change in enthalpy) would be the reaction between HCL and NaOH, which forms NaCL and H2O. This is because the formation of water releases energy in the form of heat, which is reflected in the positive ΔH value for this reaction. When an acid and a base react, they neutralize each other and form a salt and water, with the release of heat being a sign of an exothermic reaction.
Question 11 Report
Which of the following will act as both oxidizing agents and reducing agents?
Answer Details
The oxidizing and reducing properties of a substance depend on its ability to gain or lose electrons. A substance that can gain electrons acts as an oxidizing agent, while a substance that can lose electrons acts as a reducing agent. Among the given options, both Cl2 (chlorine gas) and SO2 (sulfur dioxide) can act as both oxidizing and reducing agents depending on the reaction conditions. - Cl2 can act as an oxidizing agent when it gains electrons to form Cl- ions, and it can act as a reducing agent when it loses electrons to form Cl+ ions. For example, in the reaction Cl2 + 2KBr → 2KCl + Br2, chlorine gas is acting as an oxidizing agent since it is gaining electrons from bromide ions to form bromine gas. However, in the reaction 2Cl- + Cl2 → 2Cl2-, chlorine gas is acting as a reducing agent since it is losing electrons to form chloride ions. - SO2 can act as an oxidizing agent when it gains electrons to form sulfite ions (SO32-), and it can act as a reducing agent when it loses electrons to form sulfur trioxide (SO3). For example, in the reaction SO2 + 2H2S → 3S + 2H2O, sulfur dioxide is acting as a reducing agent since it is losing electrons to form elemental sulfur. However, in the reaction 2SO32- + O2 → 2SO42-, sulfur dioxide is acting as an oxidizing agent since it is gaining electrons to form sulfate ions. H2S (hydrogen sulfide) and NH3 (ammonia) are not likely to act as both oxidizing and reducing agents under normal conditions. H2S tends to act as a reducing agent by donating electrons to oxidizing agents, while NH3 tends to act as a reducing agent by donating electrons to oxidizing agents or as a base by accepting protons.
Question 12 Report
The following non-metal form acidic oxides with oxygen except?
Answer Details
An acidic oxide is an oxide that reacts with water to form an acidic solution. Non-metals have a greater tendency to form acidic oxides than metals. Therefore, among the given options, the non-metal that does not form an acidic oxide with oxygen would be the one that does not react with water to form an acidic solution. Out of the given options, chlorine is the non-metal that does not form acidic oxides with oxygen. Chlorine reacts with oxygen to form a number of oxides such as chlorine monoxide (Cl2O), chlorine dioxide (ClO2), and chlorine trioxide (ClO3), but none of these oxides react with water to form an acidic solution. Instead, they react with water to form oxyacids or oxoacids such as hypochlorous acid (HClO), chlorous acid (HClO2), and chloric acid (HClO3), which are stronger acids than the oxides. Therefore, the correct answer is chlorine.
Question 13 Report
Which of the following is stable to heat
Answer Details
Out of the given options, K2CO3 is stable to heat.
Question 14 Report
A sample of gas exerts a pressure of 8.2 atm when confined in a 2.93 dm3 container at 20c. The number of moles of gas in the sample is
Question 15 Report
An organic functional group which can likely decolorize ammoniacal silver nitrate is?
Answer Details
The organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne. When ammoniacal silver nitrate is added to a solution containing an alkyne functional group, a white or yellowish precipitate of silver acetylide is formed. Silver acetylide is a highly explosive compound and is sparingly soluble in water, causing it to appear as a white or yellowish solid precipitate. This reaction is used as a test to detect the presence of an alkyne functional group in an organic compound. In contrast, alkanes, alkenes, and alkanols do not react with ammoniacal silver nitrate, so they cannot decolorize it. Therefore, an organic functional group that can likely decolorize ammoniacal silver nitrate is an alkyne.
Question 16 Report
6g of Mg was to 100cm3 of 1 moldm3 H2 SO4 . What mass of Mg remained undissolved? (Mg = 24)
Answer Details
The balanced chemical equation for the reaction between magnesium (Mg) and sulfuric acid (H2SO4) is: Mg + H2SO4 -> MgSO4 + H2 According to the equation, one mole of Mg reacts with one mole of H2SO4 to produce one mole of magnesium sulfate (MgSO4) and one mole of hydrogen gas (H2). Since the concentration of the sulfuric acid is 1 moldm3, this means that there is one mole of H2SO4 in every 1 liter (1000 cm3) of solution. To determine the amount of Mg that reacts with the H2SO4, we need to use stoichiometry. One mole of Mg reacts with one mole of H2SO4, so the amount of Mg that reacts with 1 moldm3 of H2SO4 is given by: 6g / 24g/mol = 0.25 mol Since the reaction is 1:1, this means that 0.25 mol of H2SO4 is consumed in the reaction. The volume of the solution is 100cm3 (0.1 dm3), so the amount of H2SO4 in the solution is: 1 mol/dm3 x 0.1 dm3 = 0.1 mol The amount of H2SO4 that remains after the reaction is: 0.1 mol - 0.25 mol = -0.15 mol This negative value means that all of the H2SO4 was consumed in the reaction, and there is excess Mg left over. The mass of Mg that remains undissolved is given by: 0.15 mol x 24g/mol = 3.6g Therefore, the correct answer is 3.6g.
Question 17 Report
Chlorine is a common bleaching agent. This is not true with
Answer Details
Chlorine is not a common bleaching agent for wet litmus paper, wet pawpaw leaf, and most wet fabric dyes. It is commonly used as a bleaching agent for printer's ink.
Question 18 Report
Calcium forms complexes with ammonia because
Answer Details
The reason why calcium forms complexes with ammonia is that it has empty d-orbitals.
Question 19 Report
Which of the following conducts electricity
Answer Details
Graphite is the option that conducts electricity.
Question 20 Report
Answer Details
The addition of charcoal to the filter bed of sand during water treatment for township supply is to remove odors and improve the taste of the water. Charcoal is a porous material that can adsorb impurities and chemicals from the water, such as dissolved organic matter that can contribute to unpleasant tastes and odors. This process helps to produce a better-quality drinking water that is free from unpleasant tastes and odors. It should be noted that while the addition of charcoal can help remove impurities, it does not kill germs or prevent tooth decay or goiter. Other water treatment methods, such as disinfection with chlorine or ultraviolet light, are required to kill harmful microorganisms and ensure the safety of the drinking water.
Question 21 Report
In the preparation of salts, the method employed will depend on the?
Answer Details
The method employed in the preparation of salts will depend on the composition of the salt. Different salts have different chemical properties, and the method used to prepare them will depend on these properties. For example, some salts can be easily dissolved in water, while others are not very soluble and may require the use of a different solvent or special conditions to dissolve. The dissociating ability, stability to heat, and precipitating ability of the salt may also play a role in determining the preparation method, but the most important factor is the composition of the salt.
Question 22 Report
Crude petroleum is converted to useful products by the process of?
Answer Details
The process of converting crude petroleum into useful products is known as fractional distillation. Crude petroleum is a mixture of different hydrocarbons, and fractional distillation separates these hydrocarbons based on their boiling points. During the process of fractional distillation, crude petroleum is heated to a high temperature, and the resulting vapors are passed through a tower called a fractionating column. This column contains a series of trays, and each tray contains a specific temperature range. As the vapors rise up the column, they cool and condense into liquids on the tray with a temperature that matches their boiling point. The liquids are then collected and further refined into useful products like gasoline, diesel, jet fuel, and heating oil. Fractional distillation is an important process because it allows us to separate and purify the different components of crude petroleum, which have different properties and uses. For example, gasoline has a lower boiling point and is more volatile than diesel fuel, which makes it ideal for use in cars. By separating these components, we can create products that meet specific needs and requirements.
Question 23 Report
The IUPAC name for CICH2-CH2-CH2-OH is
Answer Details
The IUPAC name for CICH2-CH2-CH2-OH is 3-chloropropan-1-ol. To name the compound using the IUPAC nomenclature system, we start by identifying the longest continuous chain of carbon atoms that contains the functional group (-OH). In this case, the longest chain contains three carbon atoms, so the root name is propane. Next, we identify the position of the substituent (-Cl) on the chain. The substituent is attached to the third carbon atom in the chain, so the name of the compound becomes 3-chloropropane. Finally, we add the suffix -ol to indicate that the compound contains an alcohol functional group (-OH), so the complete name of the compound is 3-chloropropan-1-ol. Therefore, the correct answer is 3-chloropropan-1-ol.
Question 24 Report
Complete dehydrogenation of ethyne yields
Question 25 Report
The sulphide that is commonly used in coating electric fluorescent tubes is?
Answer Details
The sulphide commonly used in coating electric fluorescent tubes is Zinc Sulphide. Zinc Sulphide is a type of material that glows when it is exposed to ultraviolet light. When ultraviolet light is generated inside a fluorescent tube, it excites the Zinc Sulphide particles, causing them to emit visible light. This visible light is what we see as the bright light coming from the tube. So, Zinc Sulphide acts as a phosphor and helps in producing the bright light in fluorescent tubes.
Question 26 Report
An organic compound contains 69% carbon, 15.3% hydrogen and 30.7% oxygen. Calculate the the empirical formula [C=12, H = 1, O = 16]
Answer Details
Question 27 Report
In the extraction of iron, hot air is introduced into the blast furnace through?
Answer Details
In the extraction of iron, hot air is introduced into the blast furnace through tuyeres. Tuyeres are nozzles that are located at the bottom of the blast furnace, and they are used to blow hot air into the furnace. The hot air helps to burn the coke (a fuel made from coal) which provides the heat needed to melt the iron ore. The air also helps to remove the waste gases that are produced during the reaction, allowing the iron to be extracted more efficiently.
Question 28 Report
2-methylprop-1-ene is a structural isomer of?
Question 29 Report
In order to electroplate spoon with silver, the arrangement of the electrolytic cell is?
Answer Details
Question 30 Report
Which of the following statement is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide?
Answer Details
The statement that is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide is: - 3 moles of NaOH are required for each mole of glyceride. During the hydrolysis of a glyceride (a triglyceride), the ester bonds between the fatty acid chains and glycerol are broken by the action of a strong base like sodium hydroxide. This results in the formation of glycerol and the corresponding salts of fatty acids, which are commonly known as "soaps." The reaction can be represented by the following equation: Triglyceride + 3 NaOH → 3 soap + glycerol As per the equation, 3 moles of NaOH are required to hydrolyze one mole of glyceride, and 3 moles of soap and one mole of glycerol are produced. The use of concentrated sulfuric acid (H2SO4) is not essential for the completion of the reaction, but it can be used as a catalyst to speed up the reaction.
Question 31 Report
An organic compound which decolorizes bromine water is likely to be?
Answer Details
Question 32 Report
SO2 + O2 → 2SO3
In the reaction above, the most suitable catalyst is?
Answer Details
The most suitable catalyst for the given reaction is vanadium(V)oxide (V2O5). Vanadium(V)oxide is a commonly used catalyst for the oxidation of sulfur dioxide (SO2) to sulfur trioxide (SO3). The reaction is an exothermic reaction, and it occurs at high temperatures (around 450-500°C) in the presence of a catalyst. V2O5 is an effective catalyst for this reaction because it has a high surface area and can provide active sites for the reaction to occur. The vanadium ions in the V2O5 catalyst undergo redox reactions with the sulfur dioxide and oxygen molecules, which promotes the formation of sulfur trioxide. Chromium(VI)oxide and iron(III)oxide are not suitable catalysts for this reaction because they are not effective at promoting the oxidation of sulfur dioxide to sulfur trioxide. Copper(I)oxide can be used as a catalyst for the reaction, but it is not as effective as vanadium(V)oxide.
Question 33 Report
Which of the following roles does sodium chloride play in preparation? It
Answer Details
The role that sodium chloride (NaCl) plays in soap preparation is to separate soap from glycerol. When fats or oils are hydrolyzed with an alkali, such as sodium hydroxide (NaOH), the result is a mixture of soap and glycerol. Adding NaCl to this mixture helps to induce the precipitation of the soap, allowing it to be separated from the glycerol. This process is known as "salting out" and is used to purify the soap and remove impurities. Sodium chloride does not react with glycerol or accelerate the decomposition of fat and oil. Also, it does not convert the fatty acid to its sodium salt as this conversion is done by the alkali (such as NaOH) during the saponification process.
Question 34 Report
An organic compound which liberate carbon(iv)oxide from trioxocarbonate(iv) solution is likely to be?
Answer Details
The organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution is CH3COOH (acetic acid). When acetic acid is added to a solution of trioxocarbonate(iv) (carbonate) it reacts to form carbon(iv)oxide gas, water and a salt. The balanced chemical equation for the reaction is: 2CH3COOH + Na2CO3 → CO2 + 2H2O + 2NaCH3COO The carbon(iv)oxide gas is released as bubbles, causing the solution to fizz. Therefore, CH3COOH is the organic compound that liberates carbon(iv)oxide from trioxocarbonate(iv) solution.
Question 35 Report
A colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is?
Answer Details
The colored gas that is known to be poisonous and can readily damage the mucous lining of the lungs is chlorine. Chlorine is a highly reactive chemical element that is used in the production of many everyday products, such as paper, textiles, and plastics. It is also used as a disinfectant in swimming pools and water treatment plants. Inhaling chlorine gas can cause severe respiratory problems, including coughing, chest pain, and difficulty breathing. Prolonged exposure to chlorine can cause lung damage, and in extreme cases, it can be fatal. Chlorine gas is also highly irritating to the eyes, skin, and mucous membranes. It is important to handle chlorine with caution and to use appropriate protective gear, such as gloves and respiratory masks, when working with it. Proper ventilation and monitoring of chlorine levels are also essential to prevent exposure to this toxic gas.
Question 36 Report
H+ + OH− → H2 O
The equation above illustrates
Question 38 Report
A piece of radioactive element has initially 8.0×10^22 atoms. The half life of two days after 16 days the number of atom is
Question 40 Report
If the volume of a given mass of a gas at 0ºc is 29.5cm3 . What will be the volume of the gas at 15ºc, given that the pressure remains constant.
Would you like to proceed with this action?