Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Factorize a2x - b2y - b2x + a2y
Answer Details
We can use the identity a^2 - b^2 = (a+b)(a-b) to factorize the expression. Let's rewrite the expression using this identity: a^2x - b^2y - b^2x + a^2y = (a^2x + a^2y) - (b^2x + b^2y) Now we can see that we have a common factor of (a^2 - b^2) in both terms. (a^2 - b^2)(x + y) = (a + b)(a - b)(x + y) So the correct answer is: (a + b)(a - b)(x + y)
Question 2 Report
Find the point (x, y) on the Euclidean plane where the curve y = 2x2 - 2x + 3 has 2 as gradient
Answer Details
We know that the gradient of a curve is given by its derivative. Therefore, we need to find the derivative of the given curve and equate it to 2 to find the point where the gradient is 2. y = 2x^2 - 2x + 3 dy/dx = 4x - 2 Equating dy/dx to 2, we get: 4x - 2 = 2 4x = 4 x = 1 Substituting x = 1 in the original equation, we get: y = 2(1)^2 - 2(1) + 3 y = 3 Therefore, the point where the curve has a gradient of 2 is (1, 3). So, the correct option is: (1, 3).
Question 3 Report
Calculate the perimeter, in cm, of a sector of a circle of radius 8cm and angle 45o
Answer Details
Perimeter = OP + OQ + PQ
= 8 + 8 + PQ
length PQ = θ360×2πr
= 45360
x 2 x π
x 8
= 2π
Perimeter of sector 2r + L
Where l = length of arc and r = radius
∴ P = 2(8) + 2π
= 16 + 2π
Question 4 Report
x12345f21212
Find the variance of the frequency distribution above
Answer Details
xffx¯x?x(¯x?x)2f(¯x?x)2122?248212?111326000414111221024882418
x = ?fx?f
= 248
= 3
Variance (62) = ?f(¯x?x)2?f
= 188
= 94
Question 5 Report
Answer Details
SQR + RQV + VQU = 18o angle on a straight line SP is parallel to QR and PV is parallel to TR
< STP = < RQV = 30o
But SQR + 30o + 50o = 180o
SQR = 180 - 80
= 100o
Question 6 Report
Given that √2 = 1.1414, find without using tables, the value of 1√2
Question 7 Report
Simplify √48 - 9√3 + √75
Answer Details
√48
- 9√3
+ √75
Rearrange = √48
+ √75
- 9√3
= (√16 x √3) + (√25 x √3) - 9√3
=4√3 + 5√3 - 9√3
Rationalize →
9√3 = 9√3
x √3√3
= 9√3√9
- 9√3√3
= 3√3
Question 8 Report
Evaluate ∫1−1 (2x + 1)2dx
Answer Details
∫1−1
(2x + 1)2dx
= ∫1−1
(4x2 + 4x + 1)dx
= ∫1−1
[4x33
+ 2x2 + c]
= [43
+ 3 + c] - [4 + 13
+ c]
= 83
+ 3 + -1 - C
= 83
+ 2
= 143
= 423
Question 9 Report
Find the inequality which represents the shaded portion in the diagram
Answer Details
The shaded area in the diagram represents the region below the line passing through the points (1, 0) and (0, 2). To find the equation of the line, we first need to find its slope: slope = (change in y) / (change in x) slope = (0 - 2) / (1 - 0) slope = -2 Next, we use the point-slope form of the equation of a line to find the equation of the line: y - 0 = -2(x - 1) y = -2x + 2 Now we can test each inequality option to see which one represents the shaded region. We can do this by picking a point in the shaded region, plugging in its coordinates into the inequality, and checking if the inequality is true. For example, the point (0, 0) is in the shaded region, so we plug in x=0 and y=0 into each inequality: - 2(0) - 0 - 2 ≥ 0 is false - 2(0) - 0 - 2 ≤ 0 is true - 2(0) - 0 - 2 < 0 is true - 2(0) - 0 - 2 > 0 is false Therefore, the inequality that represents the shaded portion in the diagram is 2x - y - 2 ≤ 0.
Question 10 Report
Evaluate 0.36×5.4×0.634.2×9.0×2.4
Answer Details
0.36×5.4×0.634.2×9.0×2.4
= 36420×5490×63240
= 670×1830×2180
= 272000
= 0.0135
≈
= 0.013
Question 11 Report
Find the nth term of the sequence 3, 6, 10, 15, 21.....
Answer Details
(n+1)(n+2)2
If n = 1, the expression becomes 3
n = 2, the expression becomes 6
n = 4, the expression becomes 15
n = 5, the expression becomes 21
Question 12 Report
Find the values of p and q such that (x - 1)and (x - 3) are factors of px3 + qx2 + 11x - 6
Answer Details
Since (x - 1), is a factor, when the polynomial is divided by (x - 1), the remainder = zero
∴ (x - 1) = 0
x = 1
Substitute in the polynomial the value x = 1
= p(1)3 + q(1)2 + 11(1) - 6 = 0
p + q + 5 = 0 .....(i)
Also since x - 3 is a factor, ∴ x - 3 = 0
x = 3
Substitute p(3)3 + q(3)2 + 11(3) - 6 = 0
27p + 9q = -27 ......(2)
Combine eqns. (i) and (ii)
Multiply equation (i) by 9 to eliminate q
9p + 9q = -45
Subt. 27p+9q=−27−18p=−18
∴ p = 1
Question 13 Report
If a = 1, b = 3, solve for x in the equation aa?x = bx?b
Answer Details
aa?x
= bx?b
11?x
= 3x?3
? 3(1 - x) = x - 3
3 - 3x = x - 3
Rearrange 6 = 4x; x = 64
= 32
Question 14 Report
In the frustum of the cone, the top diagram is twice the bottom diameter. If the height of the frustum is h centimeters, find he height of the cone.
Answer Details
xr = x+h2r
2 x r = r (x + h)
Total height of cone = x + h
but x = h
total height = 2h
Question 15 Report
The angle of depression of a boat from the top of a cliff 10m high is 30. How far is the boat from the foot of the cliff?
Answer Details
The given scenario can be visualized as follows:
A (top of cliff) /| / | / | / | 10m / | /θ | / | / | B--------C (boat on water surface)
Here, the angle of depression of point B from point A is given as 30 degrees. We are required to find the distance between point B and point C, denoted by BC.
We know that the tangent of an angle is the ratio of the opposite side to the adjacent side. In this case, the opposite side is AB and the adjacent side is BC.
Thus, we have:
tan 30° = AB / BC
AB is the height of the cliff, which is given as 10m.
Hence, we have:
1/√3 = 10 / BC
Solving for BC, we get:
BC = 10√3 meters
Therefore, the boat is 10√3 meters away from the foot of the cliff.
Hence, the answer is 10√3m.
Question 16 Report
Find P if x?3(1?x)(x+2) = p1?x + Qx+2
Answer Details
x−3(1−x)(x+2)
= p1−x
+ Qx+2
Multiply both sides by LCM i.e. (1 - x(x + 2))
∴ x - 3 = p(x + 2) + Q(1 - x)
When x = +1
(+1) - 3 = p(+1 + 2) + Q(1 - 1)
-2 = 3p + 0(Q)
3p = -2
∴ p = −23
Question 17 Report
The grades A1, A2, A3, C4 and F earned by students in a particular course are shown in the pie chart. What percentage of the students obtained a C4 grade?
Answer Details
Question 18 Report
In the diagram, O is the centre of the circle. If SOQ is a diameter and < PRS is 38∘
, what is the value of < PSQ
Answer Details
Since SOQ is a diameter of the circle, angle SPQ = 90 degrees (angles subtended by a diameter are always 90 degrees). Therefore, angle PSQ is the difference between angle PRS and angle SPQ. Angle PSQ = angle PRS - angle SPQ = 38 - 90 = -52 degrees. However, since angles in a circle add up to 360 degrees, we can add 360 degrees to -52 to get the equivalent angle in the circle. Angle PSQ = -52 + 360 = 308 degrees. Therefore, the value of angle PSQ is 308 degrees. So the correct option is: 52∘.
Question 19 Report
⊕mod1024682482648642486426246886284
The multiplication table above has modulo 10 on the set S = (2, 4, 6, 8). Find the inverse of 2
Answer Details
The inverse of 2 is 6 since 2 x 6 = 12; under mod 10
12 = 2 which is also the value required
Question 20 Report
Find the mean deviation of the set of numbers 4, 5, 9
Answer Details
To find the mean deviation of a set of numbers, we first need to find the mean or average of those numbers. The mean of the numbers 4, 5, and 9 is: (mean) = (4 + 5 + 9) / 3 = 6 Next, we need to find the deviation of each number from the mean. To do this, we subtract the mean from each number: 4 - 6 = -2 5 - 6 = -1 9 - 6 = 3 To avoid positive and negative deviations cancelling out, we take the absolute value of each deviation: | -2 | = 2 | -1 | = 1 | 3 | = 3 Then, we find the mean of these absolute deviations by summing them up and dividing by the number of numbers: (2 + 1 + 3) / 3 = 2 Therefore, the mean deviation of the set of numbers 4, 5, 9 is 2. So, the correct option is 2.
Question 21 Report
The mean of twelve positive numbers is 3. When another number is added, the mean becomes 5. Find the thirteenth number
Answer Details
Let the sum of the 12 numbers be x and the 13th number be y.
x12=3⟹x=36
36+y13=5⟹36+y=65
y=65−36=29
Question 22 Report
Without using table, solve the equation 8x-2 = 225
Answer Details
8x-2 = 225
= 200x-2 = 2
= 100x-2 = 1
x-2 = 1100
x-2 = 10-2
x = 10
Question 23 Report
What is the value of sin(-690)?
Answer Details
The sine function is a periodic function, which means that its values repeat after a certain interval. Specifically, the sine function has a period of 360 degrees (or 2π radians), which means that sin(x) = sin(x ± 360) for any angle x. In this case, we want to find the value of sin(-690). To do so, we can add or subtract multiples of 360 degrees to get an angle in the range between -360 and 360 degrees. Adding 2*360 degrees to -690 gives us an equivalent angle of 30 degrees, since -690 + 2*360 = -690 + 720 = 30. Now we can use the unit circle or a calculator to find the sine of 30 degrees. The exact value of sin(30) is 1/2, which means that sin(-690) is also equal to 1/2. Therefore, the answer is: - 1/2 Note that none of the given options match this answer exactly, so it's possible that there is a mistake in the question or answer choices.
Question 24 Report
Evaluate log5(0.04)log318−log32
Answer Details
To evaluate the expression, we need to use the properties of logarithms. First, we can simplify the expression inside the parentheses of the logarithm: log5(0.04) = log5(4/100) = log5(4) - log5(100) = log5(2^2) - log5(10^2) = 2log5(2) - 2 Next, we can simplify the second part of the expression: log318 - log32 = log3(18/32) = log3(9/16) = log3(3^2) - log3(2^4) = 2log3(3) - 4 Substituting these simplified expressions back into the original expression, we get: 2log5(2) - 2 - (2log3(3) - 4) Simplifying further, we get: 2log5(2) - 2 - 2log3(3) + 4 Combining like terms, we get: 2log5(2) - 2log3(3) + 2 Now, we can plug in the values of log5(2) and log3(3) using a calculator: log5(2) ≈ 0.4307 and log3(3) = 1 Substituting these values, we get: 2(0.4307) - 2(1) + 2 ≈ 0.8614 - 2 + 2 ≈ -0.1386 Therefore, the answer is -1, since it is the only option that is negative.
Question 25 Report
In the diagram, PTS is a tangent to the circle TQR at T. Calculate < RTS
Answer Details
RTS = RQT (angle between a tangent and a chord at the point of contact is equal to the angle in the alternate segment) But R = Q + T = 180
RQT = 180? - (50 + 60)
= 180? - 110?
= 70?
Since RQT = RTS = 70?
Question 26 Report
The equation of the graph is
Answer Details
y = x3 - 27, y = -27 → (0, -27)
when y = 0, x = 3 (3, 0)
Question 27 Report
In a survey, it was observed that 20 students read newspapers and 35 read novels. If 40 of the students read either newspapers or novels, what is the probability of the students who read both newspapers and novels?
Answer Details
40 = 20 - x + x + 35 - x
40 = 55 - x
x = 55 - 40
= 15
∴ P(both) 1540
= 38
Question 28 Report
Find the range of values of x for which 1x
> 2 is true
Answer Details
1x
> 2 = xx2
> 2
x > 2x2
= 2x2 < x
= 2x2 - x < 0
= x(2x - 10 < 0
Case 1(+, -) = x > 0, 2x - 1 < 0
x > 0, x < 12
(solution)
Case 2(-, 4) = x < 0, 2x - 1 > 0
x < 0, x , 12
= 0
Question 29 Report
If three angles of a quadrilateral are (3y - x - z)o, 3xo, (2z - 2y - x)o find the fourth angle in terms of x, y and z
Answer Details
The sum of angles of a quadrilateral is 360o
∴ (3y - x - z)o + 3xo + (2z - 2y - x)o + po = 360o
Where P is the fourth angle
3y - x - z + 3x + 2z - 2y - x + p = 360o
p = 360 - (x + y + z)
∴ p = (360 - x - y - z)o
Question 30 Report
Simplify (2m?u)2?(m?2u)25m2?5u2
Answer Details
(2m?u)2?(m?2u)25m2?5u2
= 2m?u+m?2u)(2m?u?m+2u)5(m+u)(m?u)
= 3(m?u)(m+u)5(m+u)(m?u)
= 35
Question 31 Report
Class Interval1−56−1011−1516−2021−25Frequency6152072
Estimate the median of the frequency distribution above
Answer Details
Median = L + [N2−ffm
]h
N = Sum of frequencies
L = lower class boundary of median class
f = sum of all frequencies below L
fm = frequency of modal class and
h = class width of median class
Median = 11 + [502−2120
]5
= 11 + (25−2120
)5
= 11 + ((4)20
)
11 + 1 = 12
Question 32 Report
Solve for r in the following equation 1r−1 + 2r+1 = 3r
Answer Details
1r−1
+ 2r+1
= 3r
Multiply through by r(r -1) which is the LCM
= (r)(r + 1) + 2(r)(r - 1)
= 3(r - 1)(r + 1)
= r2 + r + 2r2 - 2r
3r2 - 3 = 3r2
r = 3r2 - 3
-r = -3
∴ r = 3
Question 33 Report
An open rectangular box is made of wood 2cm thick. If the internal dimensions of the box are 50cm long, 36cm wide and 20cm deep, the box volume of wood in the box is
Answer Details
Internal dimension are 50cm, 36cm and 20cm
internal volume = 50 x 36 x 20cm3
1000 x 36cm3
= 36000cm3
External dimension are 54cm x 40cm x 22cm
= 2160cm2 x 22cm = 47520cm3
Volume of wood = Ext. volume - Int. volume
= 47,520cm3 - 36,000cm3
= 11,520cm3
Question 34 Report
The equation of the line in the graph is
Answer Details
Gradient of line = Change in yChange in x=y2−y1x2−x1
y2 = 0, y1 = 4
x2 = 3 and x1 = 0
y2−y1x2−x1=0−43−0=−43
Equation of straight line = y = mx + c
where m = gradient and c = y
intercept = 4
y = 4x + 43 , multiple through by 3
3y = 4x + 12
Question 36 Report
Solve for x and y (113y) (x1) = (41)
Answer Details
(113y)
(x1)
= (41)
= x + 1 = 4
x = 4 - 1
= 3
3x + y =1
3(3) = y = 1
= 9 + y = 1
y = 1 - 9
= -8
Question 37 Report
If M(4, q) is the mid-point of the line joining L(p, -2) and N(q, p). Find the values of p and q
Answer Details
To find the values of p and q, we can use the midpoint formula, which states that the midpoint of a line segment between two points (x1, y1) and (x2, y2) is ((x1+x2)/2, (y1+y2)/2). Here, we are given that M(4,q) is the midpoint of the line joining L(p,-2) and N(q,p). So we know that: - The x-coordinate of M is the average of the x-coordinates of L and N: (p+q)/2 = 4 - The y-coordinate of M is the average of the y-coordinates of L and N: (-2+p)/2 = q Simplifying the first equation, we get: (p+q)/2 = 4 p+q = 8 q = 8-p Substituting this into the second equation, we get: (-2+p)/2 = q (-2+p)/2 = 8-p -2+p = 16-2p 3p = 18 p = 6 Therefore, the values of p and q are: - p = 6 - q = 8-p = 2 So the correct option is p = 6, q = 2.
Question 38 Report
he determination of the matrix ⎛⎜⎝133456201⎞⎟⎠ is
Answer Details
4 x 2 = -8 upward arrows = +ve
2 x 5 x 3 = 30
0 x 6 = 022
downward arrows = -ve
-1(1 x 5x - 1) = 5 - (2 x 6 x 2) = -24
= -(4 x 0 x 1)
= 0−19
therefore 22 - 19 = 3
Question 39 Report
A binary operation ⊕ is defines on the set of all positive integers by a ⊕ b = ab for all positive integers a, b. Which of the following properties does NOT hold?
Answer Details
a ⊕
b = ab
The set of all national rules Q, is closed under the operations, additions, subtraction, multiplication and division. Since a ⊕
b = ab; b ⊕
a = ba = ab
The number 1 is the identity element under multiplication
Question 40 Report
Given that for sets A and B, in a universal set E, A ? B then A ? (A ? B)1 is
Answer Details
A ⊂
B means A is contained in B i.e. A is a subset of B(A ∩
B)1 = A1
A(A ∩
B)1 = A ∩
A1
The intersection of complement of a set P and P1 has no element
i.e. n(A ∩
A1) = ϕ
Question 41 Report
In the diagram. Find h
Answer Details
A△ = √S(S−a)(S−b)(S−c) (Hero's Formula)
S = a+b+c2 = 5+6+72
182=9
A△ √9×4×3×2
√216=6√6cm3
A△ = 12×6×h
6√6=12×7×h
h = 12h√6
Question 42 Report
Age in years101112Number of pupils6277
The table above shows the number of pupils in each age group in a class. What is the probability that a pupil chosen at random is at least 11 years old?
Answer Details
To find the probability that a pupil chosen at random is at least 11 years old, we need to add up the number of pupils in the 11-year-old and 12-year-old age groups, since they are the ones who are at least 11 years old. From the table, we can see that there are 27 pupils who are 11 years old and 7 pupils who are 12 years old. Therefore, the total number of pupils who are at least 11 years old is 27 + 7 = 34. To find the probability, we divide the number of pupils who are at least 11 years old by the total number of pupils in the class. From the table, we can see that the total number of pupils in the class is 6 + 27 + 7 = 40. Therefore, the probability that a pupil chosen at random is at least 11 years old is: 34/40 = 17/20 So the answer is: 17/20.
Question 43 Report
Find the value of log10 r + log10 r2 + log10 r4 + log10 r8 + log10 r16 + log10 r32 = 63
Answer Details
log10 r + log10 r2 + log10 r4 + log10 r8 + log10 r16 + log10 r32 = 63
log10r63 = 63
63 = 1063
∴ r = 10
Question 44 Report
What is the locus of a point P which moves on one side of a straight line XY, so that the angle XPY is always equal to 90o?
Answer Details
Since XY is a fixed line and
XPY = 90o P is on one side of XY
P1P2P3......Pn are all possible cases where
XPY = 90o the only possible tendency is a semicircle because angles in semicircle equals 90o
Question 45 Report
Evaluate 13÷[57(910?1+34)]
Answer Details
13÷[57(910?1+34)]
13÷[57(910?1010+34)]
= 13÷[57(?110+34)]
= 13÷[57(?2+1520)]
= 13÷[57×1320]
13+[1328]
= 13×2813
= 2839
Question 46 Report
x12345fy+2y−22y−3y+43y−4
This table shows the frequency distribution of a data if the mean is 4314 find y
Answer Details
Question 47 Report
If y = 3t3 + 2t2 - 7t + 3, find dydt at t = -1
Answer Details
y = 3t3 + 2t2 - 7t + 3
dydt
= 9t2 + 4t - 7
When t = -1
dydt
= 9(-1)2 + 4(-1) - 7
= 9 - 4 -7
= 9 - 11
= -2
Question 48 Report
If the 6th term of an arithmetic progression is 11 and the first term is 1, find the common difference.
Answer Details
To find the common difference of the arithmetic progression, we can use the formula: nth term = a + (n - 1)d where a is the first term, d is the common difference, and n is the term number. In this case, we know that the first term is 1, and the sixth term is 11. So we can plug these values into the formula: 11 = 1 + (6 - 1)d Simplifying the right-hand side, we get: 11 = 1 + 5d Subtracting 1 from both sides, we get: 10 = 5d Dividing both sides by 5, we get: d = 2 Therefore, the common difference of the arithmetic progression is 2.
Would you like to proceed with this action?