Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
200cm3 of 0.50mol/dm3 solution of calcium hydrogen trioxocarbonate (IV) is heated. The maximum weight of solid precipitated is
Answer Details
To solve this problem, we need to use the concept of stoichiometry and the solubility product constant (Ksp) of calcium hydrogen trioxocarbonate (IV). First, we need to write the balanced equation for the reaction that occurs when the solution of calcium hydrogen trioxocarbonate (IV) is heated: Ca(HCO3)2(s) → CaCO3(s) + H2O(g) + CO2(g) From the balanced equation, we can see that 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate. Therefore, we need to determine the number of moles of calcium hydrogen trioxocarbonate (IV) in the solution: Number of moles = concentration x volume Number of moles = 0.50 mol/dm³ x 0.2 dm³ Number of moles = 0.1 mol Since 1 mole of calcium hydrogen trioxocarbonate (IV) produces 1 mole of calcium carbonate, the number of moles of calcium carbonate produced will also be 0.1 mol. Next, we need to use the solubility product constant (Ksp) of calcium carbonate to determine the maximum amount of solid that can be precipitated: Ksp = [Ca²⁺][CO3²⁻] Ksp = 3.3 x 10⁻⁹ (at 25°C) At the maximum amount of solid precipitated, all the calcium carbonate formed will have precipitated, and the concentration of calcium ions and carbonate ions will be equal. Therefore, we can assume that the concentration of calcium ions and carbonate ions is both x. Substituting into the Ksp expression: Ksp = x² 3.3 x 10⁻⁹ = x² x = 5.74 x 10⁻⁵ mol/dm³ The mass of calcium carbonate precipitated can now be calculated: Mass = number of moles x molar mass Mass = 0.1 mol x 100.1 g/mol Mass = 10.01 g Therefore, the maximum weight of solid precipitated is approximately 10 g. Note that this calculation assumes that all the calcium carbonate precipitated as a solid, which may not always be the case in a real-world experiment. Additionally, this calculation does not take into account any losses due to filtration or other experimental errors.
Question 2 Report
At 27°C, 58.5g of sodium chloride is present in 250cm3 of a solution. The solubility of sodium chloride at this temperature is?
(molar mass of sodium chloride = 111.0gmol−1 )
Answer Details
Given the Mass of the salt = 58.5g
Volume = 250 cm3
= 0.25 dm3
Mass concentration = MassVolume
= 58.50.25
= 234 gdm−3
Solubility (in moldm−3
= 234111
= 2.11 moldm−3
≊
2.0 moldm−3
Question 3 Report
A synthetic rubber is obtained from the polymerization of
Answer Details
A synthetic rubber is obtained from the polymerization of isoprene. Isoprene is a type of hydrocarbon that can be polymerized, or chemically joined together, to form long chains. This process is called polymerization, and the resulting material is called a polymer. When isoprene is polymerized, it forms a synthetic rubber, which is a type of polymer that is used in a wide range of products, including tires, hoses, and adhesives. Synthetic rubber offers several advantages over natural rubber, including improved durability and resistance to heat, ozone, and chemicals.
Question 4 Report
The emission of two successive beta particles from the nucleus 3215P will produce
Answer Details
Question 5 Report
A radioactive nucleus has a half-life of 20 years, starting with 100,000 particles, how many particles will be left exactly at the end of 40 years
Answer Details
The half-life of a radioactive nucleus is the time it takes for half of its particles to decay. This means that after 20 years, 100,000 particles will become 50,000 particles. After 40 years, we can find the number of particles remaining by counting the number of half-lives that have passed. Since 40 years is double the half-life of 20 years, this means that two half-lives have passed, so the number of particles will be halved twice. Starting with 100,000 particles: - After 1 half-life (20 years), there will be 50,000 particles remaining. - After 2 half-lives (40 years), there will be 25,000 particles remaining. So, exactly at the end of 40 years, there will be 25,000 particles remaining.
Question 6 Report
In the reaction:
M + N → P
ΔH = +Q kJWhich of the following would increase the concentration of the product?
Answer Details
Increasing the temperature would increase the concentration of the product, P. The reaction rate, or the speed at which the reaction occurs, is influenced by temperature. An increase in temperature raises the kinetic energy of the reacting molecules, making it easier for them to collide and react. This leads to a higher rate of reaction and a higher concentration of the product, P. Adding a suitable catalyst can also increase the reaction rate, but it does not directly affect the concentration of the product. Increasing the concentration of P does not affect the reaction itself, but is a result of the reaction having taken place. Decreasing the temperature would slow down the reaction rate and reduce the concentration of the product.
Question 7 Report
The IUPAC name for CH3 CH2 COOCH2 CH3 is
Answer Details
The IUPAC name for the given molecule is ethyl propanoate. To arrive at the IUPAC name, we first identify the longest continuous chain of carbon atoms, which in this case is a 4-carbon chain (propane). We then identify and name the substituent groups attached to this chain, which are a methyl group (CH3) attached to the second carbon atom and an ethoxy group (OC2H5) attached to the third carbon atom. The ethoxy group is named as an ethyl group, and the entire molecule is named as ethyl propanoate, following the standard IUPAC naming conventions for esters.
Question 8 Report
By what amount must the temperature of 200cm3 of Nitrogen at 27°C be increased to double the pressure if the final volume is 150cm3 (Assume ideality)
Answer Details
Using the ideal gas law and equation:
P1V1T1=P2V2T2
P1×200cm3300K=2P×150cm3T2
Cross multiply:
T2=300×150×2P200×P
=450K
or 177∘C
Don't forget to convert to ∘C
Question 9 Report
Which of the following is a physical change?
Answer Details
A physical change refers to a change in a substance that does not result in a change in its chemical composition. Out of the options provided, freezing ice cream is a physical change. This is because when ice cream is frozen, it changes from a liquid state to a solid state without any chemical reaction occurring. Exposing white phosphorus to air is a chemical change, as it reacts with oxygen in the air to form a new substance, phosphorus oxide. Burning kerosene is also a chemical change, as it undergoes combustion to form new substances, such as carbon dioxide and water vapor. Dissolving calcium in water is a physical change, as it simply involves the physical mixing of two substances without any chemical reaction occurring. Therefore, the only option that is a physical change is freezing ice cream.
Question 10 Report
Consider the equation below:
Cr2 O2−7 + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2 O.
The oxidation number of chromium changes from
Answer Details
Cr2
O2−7
+ 6Fe2+
+ 14H+
→
2Cr3+
+ 6Fe3+
+ 7H2
O
The oxidation of Cr in Cr2
O2−7
:
Let the oxidation of Cr = x;
2x + (-2 x 7) = -2 ⟹
2x - 14 = -2
2x = 12 ; x = +6
Hence, the change in oxidation of Cr = +6 to +3
Question 12 Report
What technique is suitable for separating a binary solution of potassium chloride and potassium trioxochlorate (V)?
Answer Details
Fractional crystallization is the most suitable technique for separating a binary solution of potassium chloride and potassium trioxochlorate (V). This is because fractional crystallization is a process that separates a mixture of substances based on their solubility in a solvent at a particular temperature. In this case, potassium chloride and potassium trioxochlorate (V) have different solubilities in a solvent such as water at different temperatures. By carefully controlling the temperature, the solubility of each compound can be selectively increased or decreased, allowing them to be separated by crystallization. The less soluble compound will form crystals first and can be separated from the more soluble compound, which remains in the solution. Therefore, fractional crystallization can be used to separate potassium chloride and potassium trioxochlorate (V) in a binary solution.
Question 13 Report
How many electrons will be found in the nucleus of an atom with mass number 23 and 17 neutrons?
Answer Details
Electrons are not found in the nucleus of an atom. The nucleus of an atom only contains protons and neutrons, while electrons are located outside the nucleus in the electron cloud. The mass number of an atom is equal to the sum of the number of protons and the number of neutrons in the nucleus. Therefore, if an atom has a mass number of 23 and 17 neutrons, then the number of protons in the nucleus can be calculated as: Protons = Mass number - Neutrons Protons = 23 - 17 Protons = 6 This means that the nucleus of the atom contains 6 protons. The number of electrons in a neutral atom is equal to the number of protons, so the atom also contains 6 electrons in the electron cloud surrounding the nucleus. In summary, the answer is that there are 6 protons and 6 electrons in the atom.
Question 14 Report
What volume of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
[Na = 23, N = 14, O = 16]
Answer Details
To calculate the volume of a solution, we need to use the formula: moles of solute = concentration x volume First, let's find the number of moles of sodium trioxonitrate (V) in 5g of the solute. The molar mass of NaNO3 is: Na = 23 N = 14 3 x O = 3 x 16 = 48 Molar mass = 23 + 14 + 48 = 85 g/mol The number of moles of NaNO3 in 5g is: moles = mass / molar mass = 5 / 85 = 0.0588 moles Now, we can use the formula above to find the volume of the solution: moles of solute = concentration x volume volume = moles of solute / concentration volume = 0.0588 moles / 0.100 M volume = 0.588 litres Therefore, the correct answer is 0.588 litres of 0.100M sodium trioxonitrate (V) solution contains 5g of solute.
Question 15 Report
How many alkoxyalkanes can be obtained from the molecular formula C4 H10 O?
Answer Details
Alkoxyalkanes have a general formula of R-O-R', where R and R' are alkyl groups. From the given molecular formula C4H10O, we can see that there are four carbon atoms, so the longest possible alkyl group is butyl (C4H9-). To form alkoxyalkanes, we need to attach an oxygen atom to the alkyl group. This can be done in three ways - by attaching the oxygen to one of the terminal carbon atoms (forming a primary alcohol), by attaching it to one of the central carbon atoms (forming a secondary alcohol), or by attaching it to the carbonyl carbon atom (forming an ester). So, we can obtain a maximum of three alkoxyalkanes from the given molecular formula. However, we need to take into account that there are different isomers possible for each type of alcohol or ester, depending on which carbon atom the oxygen is attached to. Therefore, the correct answer is (at least) 3.
Question 16 Report
Which of the following pollutants will lead to the depletion of ozone layer?
Answer Details
The pollutant that leads to the depletion of the ozone layer is chlorofluorocarbon (CFCs). CFCs are man-made chemicals that were widely used in the past as refrigerants, solvents, and propellants. When CFCs are released into the atmosphere, they rise into the stratosphere, where they come into contact with ozone molecules. The chlorine atoms in CFCs react with ozone, breaking apart the ozone molecules and causing a reduction in the overall amount of ozone in the stratosphere. This process continues until all of the ozone-depleting chlorine atoms have been depleted. The resulting decrease in ozone in the stratosphere leads to an increase in the amount of harmful ultraviolet radiation that reaches the Earth's surface, which can have negative impacts on human health and the environment.
Question 17 Report
Which of the following conditions will most enhance the spontaneity of a reaction?
Answer Details
The condition that will most enhance the spontaneity of a reaction is when ΔH is negative (i.e., the reaction releases heat) and ΔS is positive (i.e., the reaction increases the disorder or randomness of the system). This is because a negative ΔH indicates that the reaction releases energy, which is favorable for a spontaneous reaction, while a positive ΔS indicates that the system becomes more disordered, which is also favorable for spontaneous reactions. Among the given options, the first condition of a negative and greater ΔH than ΔS is the best option for enhancing the spontaneity of a reaction. The other options have either a positive ΔH or a zero ΔS, which is not favorable for spontaneous reactions.
Question 18 Report
When the end alkyl groups of ethyl ethanoate are interchanged, the compound formed is
Answer Details
The compound formed when the end alkyl groups of ethyl ethanoate are interchanged is ethyl propanoate. This is because ethyl ethanoate consists of two parts: the "ethyl" group and the "ethanoate" group. The ethyl group is a two-carbon chain, and the ethanoate group is a combination of a one-carbon chain and a carbonyl group (C=O) that is also attached to an oxygen atom. When the end alkyl groups are interchanged, the "ethyl" group is moved from the second carbon to the first carbon of the ethanoate group, and the "propanoate" group is formed. The "propanoate" group consists of a three-carbon chain and the carbonyl group. Therefore, the resulting compound is ethyl propanoate, which has a chemical formula of CH3CH2COOCH2CH3. This compound is commonly used as a flavoring agent and has a fruity odor reminiscent of pears.
Question 19 Report
Elements in the periodic table are arranged in the order of their
Answer Details
Elements in the periodic table are arranged in the order of their atomic numbers. The atomic number of an element is the number of protons in the nucleus of an atom of that element. The elements are arranged in order of increasing atomic number from left to right and from top to bottom in the periodic table. The elements in each row, also known as a period, have the same number of electron shells, while the elements in each column, also known as a group or family, have the same number of valence electrons. This arrangement makes it possible to predict the chemical and physical properties of an element based on its position in the periodic table. Therefore, the correct answer is: - atomic numbers
Question 20 Report
What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hours, through molten magnesium chloride?
[1 faraday = 96500C, Mg = 24]
Answer Details
Current (I) = 2A; Time (t) = 2 hours = 7200 secs
Q = It
= 2 x 7200 = 14400C
1 F = 96500C
x = 14400C
x = 1440096500
= 0.15F
Mg2+
+ 2e−
→
Mg
2F →
24g
0.15F →
x
2x = 24 x 0.15
x = 24×0.152
= 1.8g
Question 21 Report
Which of the following pairs cannot be represented with a chemical formula?
Answer Details
The pair that cannot be represented with a chemical formula is air and bronze. Air is a mixture of several gases, primarily nitrogen (N₂) and oxygen (O₂), with small amounts of other gases such as argon (Ar), carbon dioxide (CO₂), and neon (Ne). Since air is a mixture and not a pure substance, it cannot be represented by a chemical formula. Bronze, on the other hand, is an alloy composed mainly of copper (Cu) and tin (Sn) with small amounts of other metals. The composition of bronze can vary depending on the specific alloy, but it can be represented by a chemical formula such as CuSn. Sodium chloride (NaCl) is a compound composed of sodium (Na) and chlorine (Cl) in a fixed ratio of 1:1, and it can be represented by a chemical formula. Similarly, copper (Cu) and sodium chloride (NaCl) can each be represented by a chemical formula. Cu is an element, so its chemical formula is simply its symbol, while NaCl is a compound with a fixed ratio of sodium and chlorine atoms. Caustic soda (sodium hydroxide, NaOH) and washing soda (sodium carbonate, Na₂CO₃) are both compounds that can be represented by chemical formulas. NaOH consists of one sodium atom, one oxygen atom, and one hydrogen atom, while Na₂CO₃ consists of two sodium atoms, one carbon atom, and three oxygen atoms.
Question 22 Report
Hydrocarbons which will react with Tollen's reagent conform to the general formula
Question 23 Report
The molecular shape and bond angle of water are respectively
Answer Details
The shape of water molecule = Bent/ V- shaped
The bond angle of water = 104.5°/ 105°
Question 25 Report
Which of the following metals is the most essential in the regulation of blood volume, blood pressure and osmotic equilibrium?
Answer Details
The metal that is most essential in the regulation of blood volume, blood pressure, and osmotic equilibrium is sodium. Sodium is a key electrolyte that helps maintain the balance of fluids in the body, including blood volume and blood pressure. Sodium ions are positively charged and are attracted to negatively charged ions, such as chloride (Cl-) and bicarbonate (HCO3-), which together help regulate the pH of the blood. Sodium is also essential for maintaining osmotic equilibrium, which refers to the balance of solutes between cells and the extracellular fluid. Osmotic equilibrium is critical for proper cellular function and is regulated by the movement of water and electrolytes, including sodium, in and out of cells. While the other metals listed (zinc, manganese, and iron) are important for various functions in the body, such as enzyme activity and oxygen transport, they are not directly involved in regulating blood volume, blood pressure, and osmotic equilibrium in the same way that sodium is. Therefore, the answer is not options 1, 2, or 4, and the correct answer is: sodium.
Question 26 Report
Which of the following factors will speed up the rate of evolution of carbon (iv) oxide in the reaction below?
2HCl + CaCO3 → CaCl2 + H2 O + CO2
Answer Details
The following factors increase a reaction rate
- Increase in concentration of reactants
- Increase in temperature
- Addition of catalyst
- Increase in the surface area of reactant(s)
Question 27 Report
Consider the reaction: A + 2B(g)⇌ 2C + D(g) (Δ H = +ve)
What will be the effect of decrease in temperature on the reaction?
Answer Details
The effect of a decrease in temperature on the reaction will be that the rate of the backward reaction will increase. In a chemical reaction, the rate of the forward and backward reactions are determined by the activation energy required for each step and the temperature of the system. When the temperature is decreased, the rate of the reaction decreases, and the rate of the backward reaction increases. This shift in the rate of the backward reaction means that there will be a shift in the position of the equilibrium of the reaction. As the rate of the backward reaction increases, the concentration of the reactants will increase and the concentration of the products will decrease, leading to a decrease in the overall yield of the products. In this reaction, as ΔH (the change in enthalpy) is positive, which means that the reaction is endothermic. Endothermic reactions absorb heat from the surroundings to proceed, so a decrease in temperature will lead to a decrease in the rate of the forward reaction and an increase in the rate of the backward reaction. This shift in the rate of the backward reaction will shift the position of the equilibrium of the reaction to the left, leading to an increase in the concentration of the reactants and a decrease in the concentration of the products.
Question 28 Report
When chlorine water is exposed to bright sunlight, the following products are formed
Question 29 Report
For the general equation of the nature
XP + yQ ⇌ mR + nS, the expression for the equilibrium constant is
Answer Details
The expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is: Kc = [R]m[S]n / [P]x[Q]y where Kc is the equilibrium constant, [R] and [S] are the concentrations of the products, and [P] and [Q] are the concentrations of the reactants, all raised to the stoichiometric coefficients (m, n, x, y) in the balanced equation. This equation is known as the equilibrium constant expression and it represents the ratio of the concentrations of the products and reactants at equilibrium for a particular chemical reaction. The equilibrium constant is a measure of how far a reaction proceeds towards completion, with a larger value indicating a greater extent of reaction. The equilibrium constant expression is derived from the law of mass action, which states that the rate of a chemical reaction is proportional to the product of the concentrations of the reactants raised to their stoichiometric coefficients. At equilibrium, the rates of the forward and reverse reactions are equal, and the equilibrium constant expression represents the ratio of the rate constants for these two reactions. Therefore, the correct expression for the equilibrium constant for the general equation XP + yQ ⇌ mR + nS is Kc = [R]m[S]n / [P]x[Q]y.
Question 30 Report
2-methylprop-1-ene is an isomer of
Answer Details
2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene. An isomer is a molecule that has the same molecular formula as another molecule, but a different arrangement of atoms. In this case, 2-methylprop-1-ene has the molecular formula C4H8, and so do 3-methyl but-1-ene and 2-methyl but-1-ene. The difference between these three molecules is in the arrangement of the carbon and hydrogen atoms. 2-methylprop-1-ene has a branched structure with a double bond between the first and second carbon atoms. 3-methyl but-1-ene is also a branched molecule, but the double bond is between the second and third carbon atoms. Similarly, 2-methyl but-1-ene has a double bond between the first and second carbon atoms, but it has a different branching pattern. On the other hand, pent-2-ene has five carbon atoms, so it has a different molecular formula than 2-methylprop-1-ene. Therefore, 2-methylprop-1-ene is an isomer of 3-methyl but-1-ene and 2-methyl but-1-ene, but not of pent-2-ene, because it has the same molecular formula and a different arrangement of atoms compared to the other two isomers.
Question 31 Report
The part of the total energy of a system that accounts for the useful work done in a system is known as
Answer Details
The part of the total energy of a system that accounts for the useful work done in a system is known as "Gibbs free energy". Gibbs free energy is a thermodynamic property that represents the amount of energy that can be converted into useful work in a system. It takes into account both the energy of the system and the entropy, or disorder, of the system. In other words, Gibbs free energy is a measure of the energy available to do work, taking into account the energy that is unavailable due to entropy. In simple terms, if a system has a high Gibbs free energy, it has a lot of energy available to do work, and if a system has a low Gibbs free energy, it has little energy available to do work.
Question 32 Report
Which of the following statements about catalyst is false?
Answer Details
The false statement about catalysts is: "catalysts do not alter the mechanism of the reaction and never appear in the rate law." Catalysts are substances that speed up chemical reactions without being consumed in the process. They achieve this by reducing the activation energy needed for the reaction to occur. Enzymes are a type of biological catalysts. In a chemical reaction, a catalyst is not consumed and does not appear in the overall balanced equation. However, catalysts can alter the mechanism of a reaction by providing an alternative pathway with a lower activation energy. This alternative pathway can have a different rate-determining step, which means that the presence of the catalyst can change the rate law of the reaction. Therefore, the statement that catalysts do not alter the mechanism of the reaction and never appear in the rate law is false.
Question 33 Report
In the reaction between sodium hydroxide and tetraoxosulphate (VI) solutions, what volume of 0.5 molar sodium hydroxide would exactly neutralize 10cm3 of 1.25 molar tetraoxosulphate (vi) acid?
Answer Details
Equation of reaction : 2NaOH + H2 SO4 → Na2 SO4 + 2H2 O
Concentration of a base, CB = 0.5M
Volume of acid, VA = 10cm3
Concentration of an acid, CA = 1.25M
Volume of base, VB = ?
Recall:
CAVACBVB=nAnB
... (1)
N.B: From the equation,
nAnB=12
From (1)
1.25×100.5×VB=12
12.50.5VB=12
25 = 0.5VB
VB = 50.0 cm3
Question 34 Report
The combustion of carbon(ii)oxide in oxygen can be represented by equation.
2CO + O2 ? 2CO2
Calculate the volume of the resulting mixture at the end of the reaction if 50cm3 of carbon(ii)oxide was exploded in 100cm3 of oxygen
Answer Details
Question 35 Report
Which of the following properties increases from left to right along the period but decreases down the group in the Periodic Table?
I. Atomic Number ii. Ionization energy iii. Metallic character iv. Electron affinity
Answer Details
Ionization energy and electron affinity increase across a period, and decrease down a group.
Question 36 Report
Consider the reaction
A(s) + 2B(g) → 2C(aq) + D(g)
What will be the effect of a decrease in pressure on the reaction?
Answer Details
Given: The equation below
A(s) + 2B(g) → 2C(aq) + D(g)
Since we have a higher number of moles of gaseous species on the LHS, i.e 2, a decrease in pressure will favor the forward reaction.
Question 37 Report
Which process(es) is/are involved in the turning of starch iodide paper blue-black by chlorine gas?
Answer Details
The process involved in the turning of starch iodide paper blue-black by chlorine gas is option number 3: chlorine oxidizes the iodide ion to produce iodine which attacks the starch to give the blue-black color. When chlorine gas comes in contact with iodide ions on the starch iodide paper, it oxidizes the iodide ion to form iodine. The iodine that is produced in this reaction is then able to react with the starch present on the paper to form a blue-black complex. This blue-black complex is formed due to the arrangement of the starch molecules and the iodine atoms in a way that causes them to absorb light at a specific wavelength, giving the blue-black color. Therefore, the blue-black color that is observed on the starch iodide paper is due to the reaction between iodine and starch, which is made possible by the oxidation of iodide ions by chlorine gas.
Question 38 Report
The cost of discharging 6.0g of a divalent metal, X from its salt is ₦12.00. What is the cost of discharging 9.0g of a trivalent metal, Y from its salt under the same condition?
[X = 63, Y = 27, 1F = 96,500C]
Answer Details
For X: X2+
+ 2e−
→
X
2F = 63g
xF = 6g
x = 6×263=421F
421
F = N12.00
1F = 12421
= N63.00
1F is equivalent to N63.00.
For Y: Y3+
+ 3e−
→
Y
3F = 27g
xF = 9g
x = 3×927
= 1F
1F = N63.00
Question 39 Report
Methane is prepared in the laboratory by heating a mixture of sodium ethanoate with soda lime. The chemical constituent(s) of soda lime is/are
Answer Details
The chemical constituent of soda lime used to prepare methane in the laboratory is Ca(OH)2 (calcium hydroxide) and NaOH (sodium hydroxide). Soda lime is a mixture of these two compounds. When sodium ethanoate (NaC2H3O2) is heated with soda lime, it undergoes a reaction known as the Kolbe's reaction, which produces methane gas (CH4) as one of the products. The reaction can be represented as follows: 2NaC2H3O2 + 2Ca(OH)2 → 2CH4 + 2NaOH + 2CaCO3 In this reaction, the sodium ethanoate reacts with the calcium hydroxide to form calcium acetate (Ca(C2H3O2)2) and sodium hydroxide. The calcium acetate then decomposes to produce methane gas and calcium carbonate (CaCO3), which is a solid precipitate. Therefore, the chemical constituents of soda lime used to prepare methane in the laboratory are calcium hydroxide (Ca(OH)2) and sodium hydroxide (NaOH).
Question 40 Report
Burning magnesium ribbon in air removes which of the following
(i) oxygen (ii) nitrogen (iii) argon and (iv) carbon(iv)oxide?
Answer Details
Burning magnesium ribbon in air will remove oxygen (option i) from the air, but not nitrogen (option ii), argon (option iii), or carbon dioxide (option iv). When magnesium burns, it reacts with oxygen in the air to form magnesium oxide. The reaction can be represented by the following equation: 2Mg(s) + O2(g) → 2MgO(s) The magnesium in the ribbon combines with oxygen in the air to form solid magnesium oxide. This reaction is exothermic, which means that it releases heat and light energy. So, when magnesium ribbon is burned in air, it consumes the oxygen in the air to form magnesium oxide. However, nitrogen, argon, and carbon dioxide are not chemically reactive with magnesium, and therefore are not removed from the air by the burning of magnesium ribbon. In summary, the correct option is (i) only - burning magnesium ribbon in air removes oxygen only.
Would you like to proceed with this action?