Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Answer Details
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Question 2 Report
The volume of a stone having an irregular shape can be determined using?
Answer Details
The volume of a stone with an irregular shape can be determined using a measuring cylinder. A measuring cylinder is a glass or plastic container with a narrow cylindrical shape and markings on the side to indicate the volume it contains. To determine the volume of an irregularly shaped stone, you would fill the measuring cylinder with water, carefully lower the stone into the water, and note the increase in the volume of the water. The difference in the volume of the water before and after the stone was added is equal to the volume of the stone. The meter rule, vernier calliper, and micrometer screw gauge are all measuring instruments, but they are not designed to measure the volume of irregularly shaped objects. The meter rule is a measuring tool used for measuring length. The vernier calliper is used for measuring the diameter of objects, and the micrometer screw gauge is used for precise measurements of small distances.
Question 3 Report
In the molecular explanation, heat is transferred by the
Answer Details
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Question 4 Report
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Answer Details
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Question 5 Report
A ray of light passes through the centre of curvature of a concave mirror and strikes the mirror. At what angle is the ray reflected?
Answer Details
When a light ray passes through the center of curvature of a concave mirror and strikes the mirror, the reflected ray will be reflected back on itself, creating an angle of 0 degrees. Therefore, the correct answer is 0o.
Question 6 Report
Lamps in domestic lightings are usually in
Answer Details
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 7 Report
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Answer Details
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Question 8 Report
Any line or section taken through an advancing wave in which all the particles are in the same phase is called the
Answer Details
The answer is: wave front. A wave front is any imaginary line or surface that connects all points of a wave that are in the same phase, meaning they are at the same point in their cycle. In other words, it is a line or surface that separates the points of a wave that are in-phase from those that are out-of-phase. For example, consider the ripples on the surface of a pond when a stone is thrown in. The wave fronts are the concentric circles that emanate from the point where the stone entered the water. All points along a given circle are in-phase, meaning the water molecules at those points are at the same point in their oscillation cycle. In summary, a wave front is a line or surface that separates points in a wave that are in-phase from those that are out-of-phase.
Question 9 Report
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Answer Details
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Question 10 Report
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Answer Details
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Question 11 Report
"Sum of all forces acting on a body is zero." This condition represents equilibrium'
Answer Details
First condition
Question 12 Report
The angular dispersion of a prism depends on
Answer Details
Dispersion is due to different refractive indices speeds and wavelengths.
Question 13 Report
Three resistors with resistance 200Ω, 500Ω and 1kΩ are connected in series. A 6v battery is connected to either end of the combination. Calculate the potential difference between the ends of 200Ω resistance.
Answer Details
To calculate the potential difference between the ends of the 200Ω resistance, we need to use Ohm's Law, which states that the potential difference (V) across a resistor is equal to the current (I) flowing through the resistor multiplied by the resistance (R) of the resistor. First, we need to find the total resistance of the series combination of resistors. We add up the individual resistances: Total resistance = 200Ω + 500Ω + 1kΩ = 1.7kΩ Next, we can use Ohm's Law to find the current flowing through the circuit. We know that the battery voltage is 6V, and the total resistance is 1.7kΩ: I = V / R = 6V / 1.7kΩ = 0.0035A Now we can use Ohm's Law again to find the potential difference across the 200Ω resistor: V = IR = 0.0035A * 200Ω = 0.7V Therefore, the potential difference between the ends of the 200Ω resistance is 0.7V. The correct answer is option B.
Question 14 Report
The conductivity of gases at low pressure can be termed as
I. hot cathode emission
II. thermo ionic emission
III. cold cathode emission
IV. Field emission
Answer Details
As conduction of gases is at low pressure and high voltage, called field or cold cathode emission.
Question 15 Report
Aluminium is sometimes used as the leaf of an electroscope because it
Answer Details
- Aluminium can be made in thin sheet like Gold.
- the leaf is a thin material that can be diverged easily.
Question 16 Report
The pin-hole camera produces a less sharply defined image when the
Answer Details
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Question 17 Report
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Answer Details
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Question 18 Report
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Answer Details
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
h | = | 200.8 | = | 25cm |
Question 19 Report
When two objects A and B are supplied with the same quantity of heat, the temperature change in A is obtained to be twice that of B. The mass of P is half that of Q. The ratio of the specific heat capacity of A to B is
Answer Details
θA = 2θB ,
mA | = | 12 | mB |
H = MCθ
mA
cA
θA
= mB
cB
θB
( 1/2 mB
)CA
(2θB
) = mB
cB
θB
CA CB | = | 11 |
⇒ 1 : 1
Question 20 Report
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Answer Details
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Question 21 Report
A straight wire 15cm long, carrying a current of 6.0A is in a uniform field of 0.40T. What is the force on the wire when it is at right angle to the field
Answer Details
The force on a current-carrying wire in a uniform magnetic field can be calculated using the equation: F = BILsinθ where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, L is the length of the wire in meters, and θ is the angle between the wire and the magnetic field. In this problem, the wire is 15cm long (0.15m), carrying a current of 6.0A, and the magnetic field is 0.40T. The angle between the wire and the magnetic field is 90 degrees (since the wire is at right angles to the field). Substituting the given values into the equation, we get: F = (0.40T)(6.0A)(0.15m)sin90 sin90 = 1, so we can simplify the equation to: F = (0.40T)(6.0A)(0.15m) F = 0.36N Therefore, the force on the wire is 0.36N. Answer option C is the correct answer.
Question 22 Report
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Answer Details
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Question 23 Report
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Answer Details
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Question 24 Report
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Answer Details
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Question 25 Report
According to kinetic molecular model, in gases
Answer Details
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 26 Report
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Answer Details
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Question 27 Report
When the temperature of a liquid is increased, its surface tension
Answer Details
Surface tension or elasticity of a fluid decreases with increased in temperature
Question 28 Report
In semi-conductor, the carriers of current at room temperature are
Answer Details
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Question 29 Report
The earth's gravitational field intensity at its surface is about
(G = 6.7 × 10−11 Nm2 /kg2 , mass of the earth is 6 × 1024 kg, radius of the earth is 6.4 × 106 m, g on the earth = 9.8m/s2 )
Answer Details
The earth's gravitational field intensity at its surface can be calculated using the formula: g = G * M / r^2 where G is the gravitational constant, M is the mass of the earth, r is the radius of the earth, and g is the gravitational field intensity at the surface of the earth. Substituting the given values, we get: g = (6.7 × 10^-11 Nm^2/kg^2) * (6 × 10^24 kg) / (6.4 × 10^6 m)^2 g = 9.8 N/kg (approx.) Therefore, the answer is 9.8N/kg.
Question 30 Report
The value of T in the figure above is
Answer Details
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Question 31 Report
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Answer Details
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 32 Report
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Answer Details
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Question 33 Report
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Answer Details
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Question 34 Report
A mixture of blue and red pigment when illuminated by white light will appear
Answer Details
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Question 35 Report
In the molecular explanation of conduction, heat is transferred by the
Answer Details
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Question 36 Report
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Answer Details
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Question 37 Report
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Answer Details
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Question 38 Report
Which of the following equations is the correct definition of the reactance of an indicator L?
Answer Details
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Question 39 Report
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Answer Details
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Question 40 Report
The equilibrium position of objects in any field corresponds to situation of
Answer Details
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Would you like to proceed with this action?