Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
Which of the following readings cannot be determined with a meter rule?
Answer Details
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Question 2 Report
Any line or section taken through an advancing wave in which all the particles are in the same phase is called the
Answer Details
The answer is: wave front. A wave front is any imaginary line or surface that connects all points of a wave that are in the same phase, meaning they are at the same point in their cycle. In other words, it is a line or surface that separates the points of a wave that are in-phase from those that are out-of-phase. For example, consider the ripples on the surface of a pond when a stone is thrown in. The wave fronts are the concentric circles that emanate from the point where the stone entered the water. All points along a given circle are in-phase, meaning the water molecules at those points are at the same point in their oscillation cycle. In summary, a wave front is a line or surface that separates points in a wave that are in-phase from those that are out-of-phase.
Question 3 Report
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Answer Details
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Question 4 Report
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Answer Details
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Question 5 Report
Lamps in domestic lightings are usually in
Answer Details
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 6 Report
An alternating current can induce voltage because it has
Answer Details
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Question 7 Report
Which of the following statement about the electromagnet shown above is correct?
Answer Details
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Question 8 Report
A safety precaution designed to prolong the life of a lead acid accumulator is
Answer Details
- Topping is done with distilled water
- Naked flame should be avoided when charging the battery
- Direct connection of wires to the terminals should be avoided.
Question 9 Report
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Answer Details
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Question 10 Report
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Answer Details
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Question 11 Report
An a.c of 1A at a frequency of 800 cycles per second flows through a coil, the inductance of which is 2.5mH and the resistance of which is 5Ω. What is the power absorbed in the Coil?
Answer Details
I = 1A, F = 800 cycles/s = 800Hz
R = 5Ω, L = 2.5mH
P = I2
R = I2
× 5 = 5W
Question 12 Report
In the molecular explanation, heat is transferred by the
Answer Details
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Question 13 Report
The mass of a nucleus is the
Answer Details
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Question 14 Report
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Answer Details
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
| h | = | 200.8 | = | 25cm |
Question 15 Report
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Answer Details
P = 0.2cm, L = r = 23cm
| VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Question 16 Report
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Answer Details
| v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
| v | = | 2 × 4x | = | 8 | ms |
Question 17 Report
Electrons were discovered by
Answer Details
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Question 18 Report
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Answer Details
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Question 19 Report
In semi-conductor, the carriers of current at room temperature are
Answer Details
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Question 20 Report
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Answer Details
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Question 21 Report
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Answer Details
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Question 22 Report
According to kinetic molecular model, in gases
Answer Details
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Question 23 Report
Efficiency of conduction in liquids and gases compared to solids is
Answer Details
The efficiency of conduction in liquids and gases compared to solids is generally less efficient. This means that solids are better conductors of heat and electricity than liquids and gases. This is because the particles in solids are closely packed and are tightly bound to one another, allowing heat and electricity to flow easily through the material. On the other hand, the particles in liquids and gases are more spread out and less tightly bound, making it more difficult for heat and electricity to flow through these materials. However, it is important to note that the efficiency of conduction can vary depending on the specific liquid or gas and the specific solid being compared. Some liquids and gases may have properties that make them better conductors than certain solids, but this is not a general rule.
Question 24 Report
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Answer Details
| f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Question 25 Report
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Answer Details
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Question 26 Report
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Answer Details
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Question 27 Report
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Answer Details
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Question 28 Report
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Answer Details
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Question 29 Report
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Answer Details
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
| using | α | = | l2 - l1 l1 ΔT |
| 15(10) | = | l2 - l1 2.5(5) |
| l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Question 30 Report
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Answer Details
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Question 31 Report
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Answer Details
all the parallel forces must be equal in magnitude and direction
Question 32 Report
A single force which produces the same effect as a set of forces acting together at a point is known as the
Answer Details
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Question 33 Report
The diagram above represents the stress-strain graph of a loaded wire. Which of these statements is correct?
Answer Details
- I is the elastic limit
- the end of the constant part J is the yield point
- L is the break point.
Question 34 Report
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Answer Details
| CT | = | C1 × C2 C1 + C2 |
| = | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Question 35 Report
"Sum of all forces acting on a body is zero." This condition represents equilibrium'
Answer Details
First condition
Question 36 Report
A straight wire 15cm long, carrying a current of 6.0A is in a uniform field of 0.40T. What is the force on the wire when it is at right angle to the field
Answer Details
The force on a current-carrying wire in a uniform magnetic field can be calculated using the equation: F = BILsinθ where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, L is the length of the wire in meters, and θ is the angle between the wire and the magnetic field. In this problem, the wire is 15cm long (0.15m), carrying a current of 6.0A, and the magnetic field is 0.40T. The angle between the wire and the magnetic field is 90 degrees (since the wire is at right angles to the field). Substituting the given values into the equation, we get: F = (0.40T)(6.0A)(0.15m)sin90 sin90 = 1, so we can simplify the equation to: F = (0.40T)(6.0A)(0.15m) F = 0.36N Therefore, the force on the wire is 0.36N. Answer option C is the correct answer.
Question 37 Report
According to kinetic molecular model, in gases
Answer Details
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Question 38 Report
Neutrons were discovered by
Answer Details
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Question 39 Report
A coil X is moved quickly away from the end Y of a stationary metal bar and a current then flows in X as shown above.
Then
Answer Details
N - S magnet is moved towards a coil production clockwise direction of current in the coil.
- This is the same as a coil moved away from S-N (Y - North pole)
Question 40 Report
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Answer Details
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Would you like to proceed with this action?