Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
When the temperature of a liquid is increased, its surface tension
Answer Details
Surface tension or elasticity of a fluid decreases with increased in temperature
Question 2 Report
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Answer Details
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Question 3 Report
The value of T in the figure above is
Answer Details
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Question 4 Report
The mass of a nucleus is the
Answer Details
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Question 5 Report
Lamps in domestic lightings are usually in
Answer Details
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Question 6 Report
Gases conduct electricity under
Answer Details
Gases conduct electricity under low pressure and high voltage
Question 7 Report
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Answer Details
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Question 8 Report
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Answer Details
all the parallel forces must be equal in magnitude and direction
Question 9 Report
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Answer Details
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
| P1 V1 T1 | = | P2 V2 T1 |
| V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Question 10 Report
In the molecular explanation of conduction, heat is transferred by the
Answer Details
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Question 11 Report
One newton × One meter equals?
Answer Details
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Question 12 Report
The resultant capacitance in the figure above is
Answer Details
For the parallel arrangement = 2 + 4 = 6μf
| For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
| 1CT | = | 1512 |
| CT | = | 1215 | = | 0.8μf |
Question 13 Report
When blue and green colours of light are mixed, the resultant colour is
Question 14 Report
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Answer Details
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
| using | α | = | l2 - l1 l1 ΔT |
| 15(10) | = | l2 - l1 2.5(5) |
| l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Question 15 Report
Which of the following equations is the correct definition of the reactance of an indicator L?
Answer Details
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Question 16 Report
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Answer Details
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Question 17 Report
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Answer Details
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Question 18 Report
A safety precaution designed to prolong the life of a lead acid accumulator is
Answer Details
- Topping is done with distilled water
- Naked flame should be avoided when charging the battery
- Direct connection of wires to the terminals should be avoided.
Question 19 Report
Electrons were discovered by
Answer Details
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Question 20 Report
A vibrator causes water ripples to travel across the surface of a tank. The wave travels 50cm in 2s and the distance between successive crests is 5cm. Calculate the frequency of the vibrator
Answer Details
The frequency of the vibrator can be calculated using the formula: frequency = speed / wavelength where speed is the speed of the wave, and wavelength is the distance between successive crests. In this case, we are given that the wave travels 50cm in 2s, which means the speed of the wave is: speed = distance / time = 50cm / 2s = 25cm/s We are also given that the distance between successive crests is 5cm, which is the wavelength. Therefore, the frequency of the vibrator is: frequency = speed / wavelength = 25cm/s / 5cm = 5Hz So the correct answer is 5Hz.
Question 21 Report
The momentum of a car moving at a constant speed in a circular track
Answer Details
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Question 22 Report
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Answer Details
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Question 23 Report
Which of the following statement about the electromagnet shown above is correct?
Answer Details
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Question 24 Report
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Answer Details
| v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
| v | = | 2 × 4x | = | 8 | ms |
Question 25 Report
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Answer Details
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Question 26 Report
The lead-acid accumulator consists of
Answer Details
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Question 27 Report
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Answer Details
P = 0.45cm, L = 60cm, Eff = 75/π%
| VR | (Screw | system) | = | 2πrP | = | 2πLP |
| M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Question 28 Report
A mixture of blue and red pigment when illuminated by white light will appear
Answer Details
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Question 29 Report
The volume of a stone having an irregular shape can be determined using?
Answer Details
The volume of a stone with an irregular shape can be determined using a measuring cylinder. A measuring cylinder is a glass or plastic container with a narrow cylindrical shape and markings on the side to indicate the volume it contains. To determine the volume of an irregularly shaped stone, you would fill the measuring cylinder with water, carefully lower the stone into the water, and note the increase in the volume of the water. The difference in the volume of the water before and after the stone was added is equal to the volume of the stone. The meter rule, vernier calliper, and micrometer screw gauge are all measuring instruments, but they are not designed to measure the volume of irregularly shaped objects. The meter rule is a measuring tool used for measuring length. The vernier calliper is used for measuring the diameter of objects, and the micrometer screw gauge is used for precise measurements of small distances.
Question 30 Report
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Answer Details
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Question 31 Report
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Answer Details
n = 200, S = 132 rev/min, v = 350m/s2
| f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
| λ | = | vf | = | 350440 | = | 0.875m |
Question 32 Report
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Answer Details
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Question 33 Report
The equilibrium position of objects in any field corresponds to situation of
Answer Details
The equilibrium position of an object in any field corresponds to the situation of minimum potential energy. This means that at the equilibrium position, the object has the lowest possible potential energy within the field. In other words, the forces acting on the object are balanced, and the object is not being pushed or pulled in any direction. Therefore, the object will remain at rest at the equilibrium position unless it is acted upon by an external force. Of the options given, the correct answer is "minimum potential energy".
Question 34 Report
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Answer Details
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Question 35 Report
Which of these is observed when air is pumped out of a discharge tube without lowering its pressure
Answer Details
Conduction takes places in gases when air is pumped out of a discharged tube under reduced pressure.
Question 36 Report
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Answer Details
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Question 37 Report
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Answer Details
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Question 38 Report
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Answer Details
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Question 39 Report
Neutrons were discovered by
Answer Details
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Question 40 Report
The angular dispersion of a prism depends on
Answer Details
Dispersion is due to different refractive indices speeds and wavelengths.
Would you like to proceed with this action?