Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
After breathing in a test tube that contains acidified K2 Cr2 O7 , a man noticed the change in the colour of K2 Cr2 O7 from orange to green. This suggests the presence of
Answer Details
When the acidified potassium dichromate (\(K_2Cr_2O_7\)) solution changes from orange to green, it indicates a chemical reaction is occurring where the chromium in the dichromate ion is being reduced. In this context, acidified \(K_2Cr_2O_7\) is commonly used as an oxidizing agent.
The change in color from orange (dichromate ion) to green (chromium ion) suggests that the dichromate ion is being reduced, and something in the person's breath is being oxidized.
The substances that can be oxidized in the breath are organic compounds, typically those containing functional groups with oxidizable hydrogen atoms or structures.
Therefore, when the color of acidified potassium dichromate changes from orange to green, it suggests the presence of an alkanol.
Question 2 Report
Hydrogen chloride gas and ammonia can be used to demonstrate the fountain experiment because they are
Answer Details
In the fountain experiment, hydrogen chloride gas (HCl) and ammonia (NH₃) are used to demonstrate the creation of a visible 'fountain' due to their high solubility in water. Here's a simple explanation:
When hydrogen chloride gas and ammonia gas come into contact with water, they dissolve very quickly and react vigorously. This is because both gases are very soluble in water. As they dissolve, a vacuum-like pressure is created inside the container where the gases are held, pulling water up into it, creating the 'fountain' effect.
Moreover, when HCl and NH₃ gases react with each other, they form a white, solid product known as ammonium chloride (NH₄Cl), which is a demonstration of how both gases can effectively dissolve and react with not just water, but also with each other.
Thus, the ability of these gases to create a fountain effect is primarily because they are very soluble in water, which allows them to dissolve rapidly and create the pressure differential necessary for the water to be pulled into the container dynamically.
Question 3 Report
The empirical formula of an organic liquid hydrocarbon is XY. If the relative molar masses of X and Y are 72 and 6 respectively, it's vapour density is likely to be
Answer Details
To determine the vapor density of the organic liquid hydrocarbon with the empirical formula XY, we first need to determine the **molecular formula** of the compound, which represents the actual number of atoms of each element in a molecule.
The **relative molar masses** of X and Y are given as 72 and 6, respectively. To find the molar mass of XY, we can add these values together:
Molar mass of XY = Molar mass of X + Molar mass of Y = 72 + 6 = 78 g/mol
Vapor density is defined as half of the molar mass of the compound, since vapor density is often compared to hydrogen, where hydrogen is taken as the standard with a molar mass of 2 g/mol. Therefore, vapor density can be calculated using the formula:
Vapor Density = (Molar Mass of the Compound) / 2
Substituting the molar mass of XY:
Vapor Density of XY = 78 / 2 = 39
Therefore, the vapor density of the hydrocarbon with the empirical formula XY is **39**.
Question 4 Report
147 N + X → 146 C + 11 P
In the reaction above, X is
Answer Details
To determine what particle X is, we need to understand the reaction given:
N + X → \146\\ C + \11\ \P
The notation in nuclear reactions is important. The numbers on top (superscripts) are the mass numbers, which represent the total number of protons and neutrons. The numbers on the bottom (subscripts) are the atomic numbers, which represent the number of protons.
Here's what we have:
Let's consider the conservation of mass and charge:
1. **Conservation of Mass Number:** The mass number of the reactants should equal the mass number of the products. If N has a mass number 'a' and X has a mass number 'b', then:
a + b = 146 + 11 = 157
2. **Conservation of Atomic Number:** The total number of protons should also be conserved. If N has an atomic number 'c' and X has an atomic number 'd', then:
c + d = 6 + 1 = 7
To satisfy these rules:
- Option X could be a **neutron**, as neutrons have a mass number of 1 and an atomic number of 0, which means they do not affect the atomic number but contribute to the mass number.
Let's verify:
- Assume X is a neutron with a mass number of 1 and an atomic number of 0, which fits the requirement for conservation of atomic mass:
Therefore, X is a neutron because it helps conserve both the mass number and the atomic number in the given nuclear reaction.
Question 5 Report
Answer Details
When a metal reacts with an acid, a chemical reaction takes place in which the metal displaces the hydrogen in the acid. This reaction produces a salt and hydrogen gas is liberated in the process.
Let's break it down further:
The general equation for the reaction is:
Metal + Acid → Salt + Hydrogen Gas
For example, when zinc (a metal) reacts with hydrochloric acid (an acid), the reaction is as follows:
Zn + 2HCl → ZnCl2 + H2
Here, zinc chloride (a salt) and hydrogen gas are produced. This illustrates that salt and hydrogen gas are formed when a metal reacts with an acid.
Question 6 Report
The number of geometrical isomers of butene are
Answer Details
To understand the geometrical isomers of butene, we need to explore its structure. Butene has four carbon atoms, and there are various structural forms that butene can take. These structural forms include linear or branched chains, with a double bond present between carbon atoms.
Geometric isomerism is a type of stereoisomerism. It occurs due to restricted rotation around the double bond, leading to different spatial arrangements of groups attached to the carbons forming the double bond. The geometric isomerism primarily occurs in alkenes like butene where the positions of substituents can vary.
Let's consider the different types of butene, focusing on the possibility of geometrical isomerism:
In conclusion, for butene, only 2-butene has geometrical isomers (cis and trans). Therefore, the number of geometric isomers is 2.
Question 7 Report
Answer Details
In the Contact Process, the catalyst used for the conversion of sulphur(IV) oxide (SO2) to sulphur(VI) oxide (SO3) is vanadium(V) oxide, also chemically represented as V2O5. This catalyst is preferred because it is more cost-effective and significantly more durable under reaction conditions than other catalysts such as platinum. Moreover, while platinum is also an effective catalyst, it is prone to poisoning by impurities that may be present in the reaction mixture. Vanadium(V) oxide, on the other hand, offers a better balance of efficiency, cost, and durability, making it the catalyst of choice in industrial applications of the Contact Process.
Question 8 Report
In a chemical reaction, surface area of reactants can affect
Answer Details
The surface area of reactants affects the rate of a reaction between limestone and hydrochloric acid because it increases the number of collisions between the particles of the reactants. For example, if you have a large marble chip of calcium carbonate and hydrochloric acid, the acid can't reach all the calcium carbonate in the middle of the chip. If you break the marble chip into smaller pieces, you'll have a larger surface area for the acid to react with, and the reaction will happen faster.
Question 9 Report
The term strong and weak acids is used to indicate the
Answer Details
The terms strong and weak acids are used to indicate the extent of ionization of an acid. This means how completely an acid dissociates into its ions in water.
Strong acids completely dissociate in water. This means that nearly all the acid molecules break down into positive hydrogen ions (H+) and their respective anions. Examples include hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric acid (HNO3).
Weak acids, on the other hand, only partially dissociate in water. This means that only a small fraction of the acid molecules break down into ions. Most of the acid remains in its molecular form. An example of a weak acid is acetic acid (CH3COOH), which is found in vinegar.
Therefore, the strength of an acid in terms of its classification as strong or weak is about how fully it dissociates into ions in an aqueous solution, not about the number of H+ ions or the strength of its action on substances.
Question 10 Report
Which of the following represents an order of increasing reactivity?
Answer Details
To determine the order of increasing reactivity of the elements listed, it's important to understand the general trends in metal reactivity. Metals react by losing electrons, and their reactivity is often influenced by their ability to lose these electrons easily. In many cases, generally, alkali metals are the most reactive, and noble metals are the least reactive. Here's a basic description of the reactivity of the given metals:
With these considerations in mind, the order of increasing reactivity from the given options would be:
Gold (Au) < Copper (Cu) < Tin (Sn) < Iron (Fe) < Calcium (Ca)
This is the order where the least reactive element is first (gold), and the most reactive element is last (calcium). Hence, the correct option represents the order: Au < Cu < Sn < Fe < Ca.
Question 11 Report
Determine the empirical formula of an oxide of sulphur containing 60% of oxygen
[S = 32, O = 16 ]
Answer Details
To determine the empirical formula of an oxide of sulfur containing 60% of oxygen, we have to understand the concept of empirical formulas, which give the simplest whole-number ratio of atoms of each element in a compound.
Step 1: Assume 100g of the compound. In 100g of the compound:
Step 2: Convert masses to moles. Use the molar mass to find moles.
Step 3: Determine the simplest whole-number ratio.
To find the ratio, divide each mole value by the smallest number of moles calculated:
The simplest ratio of S:O is 1:3.
Thus, the empirical formula of the oxide is SO3.
Question 12 Report
Hydrochloric acid is not suitable in the preparation of ethanoic acid because it
Answer Details
Hydrochloric acid is not suitable for preparing ethanoic acid because it is too volatile.Being too volatile, means it has a low boiling point and is easily evaporated. Thus, HCl is not suitable because it cannot carry out the oxidation process required to convert alcohols into acids like ethanoic acid.
Ethanoic acid, also known as acetic acid, is a weak acid that doesn't fully dissociate in water, while hydrochloric acid is a strong acid that dissociates almost completely.
Question 13 Report
An example of an amphoteric oxide is
Answer Details
An example of an amphoteric oxide is Al2O3 (aluminum oxide).
Amphoteric oxides are special because they can act as both acidic and basic oxides. This means they can react with both acids and bases to form salts and water, showcasing their dual behavior.
Here is how it works:
In contrast, oxides like CuO (copper(II) oxide) are basic oxides, and K2O (potassium oxide) is a basic oxide as well. They don't exhibit both acidic and basic properties.
Therefore, the amphoteric nature of Al2O3 is what distinguishes it from common oxides that are strictly acidic or basic. This property is crucial in various chemical processes and applications.
Question 14 Report
Water gas obtained from the gasification of coke is made up of
Answer Details
The gasification of coke to produce water gas involves reacting coke, which is primarily composed of carbon, with steam. The main chemical reaction that occurs is:
C (s) + H2O (g) → CO (g) + H2 (g)
From this reaction, the main constituents of water gas are hydrogen (H2) and carbon monoxide (CO), also known as carbon(II) oxide. Therefore, water gas obtained from the gasification of coke is made up of hydrogen and carbon(II) oxide.
Question 15 Report
How many moles of CO2 are produced when ethanol is burnt with 6g of oxygen
Answer Details
To determine how many moles of carbon dioxide (CO2) are produced when ethanol is burnt with 6g of oxygen, we need to understand the balanced chemical equation for the combustion of ethanol. The reaction is as follows:
C2H5OH + 3O2 → 2CO2 + 3H2O
This equation tells us that 1 mole of ethanol (C2H5OH) reacts with 3 moles of oxygen (O2) to produce 2 moles of carbon dioxide (CO2).
First, let's calculate how many moles of oxygen 6 g represents. The molecular weight of oxygen (O2) is approximately 32 g/mol. Therefore, the number of moles of oxygen is:
Number of moles of O2 = 6 g / 32 g/mol = 0.1875 moles
According to the balanced equation, 3 moles of O2 produce 2 moles of CO2. Hence, the relationship between moles of O2 and moles of CO2 is:
2 moles of CO2 / 3 moles of O2 = x moles of CO2 / 0.1875 moles of O2
Solving for x, we have:
x = (2/3) * 0.1875 = 0.125
Therefore, 0.125 moles of CO2 are produced when 6g of oxygen is used to burn ethanol.
Question 16 Report
The hybridization scheme in ethyne is
Answer Details
Ethyne, also known as acetylene, is a simple alkyne with the chemical formula C2H2. In ethyne, each carbon atom is bonded to two other atoms: one hydrogen atom and the other carbon atom. The molecular structure of ethyne is linear, with a triple bond between the two carbon atoms.
To determine the hybridization scheme in ethyne, we need to examine the arrangement of the electron pairs around each carbon atom. In ethyne, each carbon atom is forming two sigma (σ) bonds and two pi (π) bonds. Let's explain:
When we consider the hybridization of the carbon atoms, we focus on the formation of sigma bonds and lone pairs. In ethyne, each carbon atom utilizes two orbitals to form sigma bonds: one with the hydrogen atom and one with the other carbon atom. This implies that each carbon atom in ethyne must use two hybrid orbitals.
The two hybrid orbitals formed by each carbon atom in ethyne are a result of mixing one s orbital with one p orbital. This hybridization is referred to as sp hybridization, characterized by a linear electron geometry. The remaining two unhybridized p orbitals on each carbon atom are responsible for forming the two pi bonds in the triple bond.
In conclusion, the hybridization scheme in ethyne is sp.
Question 17 Report
Calculate the mass of Magnesium that will be liberated from its salt by the same quantity of electricity that liberated 16.0 g of Silver.
[Mg = 24.0, Ag = 108 ]
Answer Details
To solve this problem, we must consider the concept of electrochemistry and Faraday's laws of electrolysis. These laws are crucial for determining the mass of a substance liberated during electrolysis.
Faraday's first law states that the mass of a substance liberated is directly proportional to the quantity of electricity that passes through the electrolyte. The mass can be calculated using the formula:
m = (Q * M) / (n * F)
Where:
For silver (Ag), the chemical reaction at the cathode is:
Ag⁺ + e⁻ → Ag
This shows that **1 mole of electrons** is required to discharge **1 mole** of silver ions.
For magnesium (Mg), the chemical reaction at the cathode is:
Mg²⁺ + 2e⁻ → Mg
This means that **2 moles of electrons** are required to discharge **1 mole** of magnesium ions.
Given:
First, find the number of moles of Ag liberated:
Number of moles of Ag = 16 g / 108 g/mol = 0.1481 mol
The same quantity of electricity will be used to liberate an equivalent in moles of electrons for Mg.
0.1481 moles of Ag require 0.1481 moles of electrons, equivalent to:
0.1481 moles of electrons for Mg. Since Mg requires 2 moles of electrons for 1 mole of Mg:
Number of moles of Mg = 0.1481 / 2 = 0.07405 mol
Finally, calculate the mass of Mg liberated:
m = 0.07405 mol * 24 g/mol = 1.7772 g
Rounding this to the closest answer provided:
The mass of magnesium that will be liberated is approximately **1.78 g**.
Question 18 Report
Alkylation of benzene is catalyzed by
Answer Details
Alkylation of benzene is a part of a reaction class called **Friedel-Crafts alkylation**. In this reaction, an alkyl group is transferred to the aromatic benzene ring, making it a more complex molecule. The catalyst used in this process is **aluminium chloride (AlCl3)**.
Here's how the reaction typically works:
In contrast, the other options wouldn't effectively catalyze alkylation of benzene for the following reasons:
Therefore, **aluminium chloride** is the catalyst used for the alkylation of benzene in Friedel-Crafts reactions.
Question 19 Report
An example of a physical change is
Answer Details
A physical change involves a change in the physical properties of a substance, without a change in its chemical composition. This means that the substance remains the same at the molecular level, despite how it might appear differently.
An example of a physical change from the given options is the liquefaction of liquids. In this process, a substance transitions from a solid or gas to a liquid state. This change is purely physical because the molecular structure of the substance does not change; only its state or form does. Importantly, such a change is usually reversible, meaning the substance can return to its original state. For instance, water can change into ice (frozen) or steam (vapor), and can still revert back to liquid water.
On the other hand, the other options involve chemical changes, where the original substances undergo chemical reactions to form new substances with different properties, thus altering the molecular structure depending on the option.
Question 20 Report
The compound of Copper used as a fungicide is
Answer Details
The compound of copper that is commonly used as a fungicide is **Copper(II) sulfate**, which is represented by the chemical formula **CuSO4**.
Let's break this down for better understanding:
The other compounds listed do not serve as common fungicides:
Therefore, the correct and widely used copper compound as a fungicide is Copper(II) sulfate (CuSO4).
Question 21 Report
The general molecular formula Cn H2n?2 represents that of an
Answer Details
The molecular formula CnH2n-2 represents an alkyne.
To understand this, let's take a look at the characteristics of hydrocarbons, which are compounds made up of hydrogen and carbon:
The formula CnH2n-2 indicates the presence of two fewer hydrogen atoms than in an alkene. This deficiency of hydrogen atoms is characteristic of a triple bond, which is a key feature of alkynes. Therefore, hydrocarbons with this formula must contain at least one triple carbon-carbon bond.
Question 22 Report
In the extraction of Aluminium, the silica impurity is removed by
Answer Details
Aluminum is extracted from bauxite by electrolysis. The extraction proceeds in two stages;
1. Purification of the Bauxite: The impure bauxite is heated with sodium hydroxide solution to form soluble sodium tetrahydroxy aluminate (iii). The impurities in the ore which are iron (iii) oxide and trioxosilicate (iv) compounds are not soluble in the alkali. They are therefore filtered off as a sludge.
Aluminum hydroxide crystals is then added to filtrate, NaAl(OH)4 solution to induce the precipitation of Aluminum hydroxide.
2. The electrolysis of the pure alumina
Question 23 Report
A radioactive element of mass 1g has half-life of 2 minutes, what fraction of the substance would have disintegrated after 10 minutes?
Answer Details
Originalmass2n
= Residual mass
Where n = number of activity = exposuretimehalflife
Given:
Original mass = 1g, exposure time = 10 minutes , half life = 2 minutes, Residual mass = ?
Substituting all the given parameters appropriately, we have
n = 102
n = 5
Originalmass2n = Residual mass
125
5 = Residual mass
132 = Residual mass
Residual mass = 132
or 0.03125g
Question 24 Report
A liquid hydrocarbon obtained from fractional distillation of coal tar that is used in the pharmaceutical industry is
Answer Details
Benzene is a liquid hydrocarbon that is obtained from the fractional distillation of coal tar, and it is extensively used in the pharmaceutical industry. Let me break this down for you:
That's why benzene plays an important role in the pharmaceutical industry, making it a highly valued product obtained through the distillation of coal tar.
Question 25 Report
The principle which states that no two electrons in the same orbitals of an atom have same value for all four quantum numbers is the
Answer Details
The principle that states that no two electrons in the same orbitals of an atom can have the same value for all four quantum numbers is the Pauli Exclusion Principle.
To understand this principle, it's important to know a bit about the structure of an atom and what quantum numbers are:
Quantum Numbers:
1. **Principal Quantum Number (n):** This describes the energy level or shell of the electron.
2. **Angular Momentum Quantum Number (l):** This describes the subshell or shape of the orbital (s, p, d, f...).
3. **Magnetic Quantum Number (ml):** This describes the specific orbital within a subshell where the electron is located.
4. **Spin Quantum Number (ms):** This describes the spin direction of the electron, which can be either +1/2 or -1/2.
The Pauli Exclusion Principle asserts that each electron in an atom has a unique set of these four quantum numbers. While electrons can share the first three quantum numbers if they are in the same orbital (meaning they share the same energy level, the same subshell, and the same specific orbital within that subshell), they must have different Spin Quantum Numbers. This means that in any given orbital, one electron can have a spin of +1/2 and the other must have a spin of -1/2. This principle is fundamental in explaining the electronic structure of atoms and, consequently, the behavior and properties of elements.
Question 26 Report
Concentrated sodium chloride solution is electrolyzed using mercury cathode and graphite anode. The products at the anode and the cathode respectively are
Answer Details
When a concentrated sodium chloride solution is electrolyzed using a mercury cathode and graphite anode, the products are hydrogen gas at the cathode and chlorine gas at the anode
At the anode, 2Cl− → Cl2 + 2e−
At the cathode, 2H+ + 2e− → H2
During the electrolysis, hydrogen and chloride ions are removed from solution whereas sodium and hydroxide ions are left behind in solution. This means that sodium hydroxide is also formed during the electrolysis of sodium chloride solution.
Question 27 Report
Which of these is the most preferred separation technique for the isolation of solutes where the purity of the constituent is of utmost importance?
Answer Details
When the **purity of solutes** is of utmost importance, the most preferred separation technique is **recrystallization**. This method is widely used in chemistry for purifying solid compounds.
Here's a simple explanation of **recrystallization**:
1. **Dissolving the Impure Compound**: The impure solid is dissolved in a suitable hot solvent. The choice of solvent is crucial; it should dissolve the compound well at high temperatures but poorly at low temperatures.
2. **Cooling the Solution**: The solution is slowly cooled. As it cools, the solubility of the compound in the solvent decreases, causing the pure compound to form crystals and precipitate out of the solution.
3. **Collection and Drying of Crystals**: The pure crystals are collected through filtration and then allowed to dry, separating them from any remaining impurities that stay dissolved in the solvent.
The **advantage** of recrystallization is that it allows for the **removal of impurities** that are either more soluble than the desired compound at low temperatures or less soluble at high temperatures, resulting in a more purified product. Therefore, when achieving high purity is a priority, **recrystallization** is often the method of choice.
Question 28 Report
The IUPAC Nomenclature of CH3 CH2 C(CH3 )=C(CH3 )2 for the compound is
Answer Details
The compound in question is written as CH₃₃CH₂₂C(CH₃₃)=C(CH₃₃)₂₂, which seems to be intended as (CH3)3CH2CH=C(CH3)3. The IUPAC nomenclature of organic compounds follows specific rules to name the compound uniquely such that it is understood universally. Here is a comprehensive breakdown:
1. Select the longest carbon chain that includes the highest-order functional group, which, in this case, is the alkene group (double bond).
2. The longest chain consists of 5 carbons, which gives us the root name "pentene". We choose the carbon chain such that the double bond gets the lowest possible number, starting from the end of the chain closest to the double bond.
3. Number the carbon atoms in the chain from the end closest to the double bond. The numbering direction will determine the position of the double bond and substituents. The double bond starts on carbon 2.
4. Identify and name the substituents attached to the carbon chain. In this case, there are two methyl groups on carbon 3. This means it is dimethyl as there are two of them.
Thus, the complete name of the compound is 2,3-dimethylpent-2-ene. Here, "2,3-dimethyl" indicates the position and quantity of methyl groups, "pent" indicates the longest chain with 5 carbons, and "-2-ene" indicates a double bond starting at the second carbon.
Question 29 Report
23892 U + 10 n → 23992 U
The process above produces
Answer Details
The process described appears to depict a nuclear reaction involving a nuclear transmutation. Let's break down the process:
1. The starting element is initially denoted as "23892", which represents Uranium-238. In nuclear notation, "23892" indicates an atomic mass number of 238 and an atomic number of 92.
2. The next step so happens with the element "238"; however, the numbers remain: "92" indicates that the atomic number is unchanged, suggesting no change in the element. This often means a step in between of hypothetical notation.
3. Then there's the occurrence of adding a "U + 10", which again leaves the original atomic number "92".
4. In subsequent steps, it seems that the number "n" transitions to become "23992". The mass number has increased by one unit, turning the initial isotope into "23992", which represents Uranium-239.
The key point here is the transition from Uranium-238 to Uranium-239, which typically happens through the process of a neutron absorption in which a neutron is added, resulting in a change of the mass number. Such a process often leads to the creation of a radioactive isotope.
Therefore, the process described is indicative of producing a radioactive isotope, specifically Uranium-239.
Question 30 Report
The shape of the molecule of Carbon(IV) oxide is
Answer Details
The shape of the molecule of Carbon(IV) oxide, also known as carbon dioxide (CO2), is linear. This is because of the following reasons:
Due to this arrangement, carbon dioxide has a symmetric shape, making it non-polar despite having polar covalent bonds. The pulling forces of the two oxygen atoms on either side of the carbon atom cancel each other out, reinforcing its linear configuration.
Question 31 Report
Solubility curve is a plot of solubility against
Answer Details
A solubility curve is a plot of solubility against temperature. Let me explain in a simple way:
Solubility refers to the amount of a substance (solute) that can dissolve in a given quantity of solvent to form a homogeneous solution at a specified condition. The most common factor that affects solubility is the temperature.
Here's why a solubility curve typically involves temperature:
Therefore, plotting solubility against temperature in a solubility curve allows us to visualize and understand how solubility changes with variations in temperature.
Question 32 Report
The composition of alloy permalloy is iron and
Answer Details
The alloy known as **permalloy** is composed primarily of **iron** and **nickel**. Permalloy is a well-known magnetic alloy that typically consists of about **80% nickel and 20% iron**. It is renowned for having high magnetic permeability, meaning it can become magnetized easily, which makes it extremely useful in a variety of electrical and magnetic applications, such as transformers, memory storage, and magnetic shielding. The nickel in permalloy enhances the magnetic properties of the iron, giving the alloy its unique characteristics.
Question 33 Report
An example of highly unsaturated hydrocarbon is
Answer Details
To determine a highly unsaturated hydrocarbon, we must first understand the concept of saturation in hydrocarbons. **Saturated hydrocarbons** are compounds that contain the maximum possible number of hydrogen atoms, single-bonded to carbon atoms, and they are alkanes. **Unsaturated hydrocarbons** have one or more double or triple bonds between carbon atoms, which reduces the number of hydrogen atoms that can be bonded.
Examining the given options:
Based on this analysis, **C2H2** (ethyne) is a highly unsaturated hydrocarbon due to the presence of a **triple bond**. The triple bond signifies a greater level of unsaturation compared to double bonds in hydrocarbons like ethene (C2H4).
Question 34 Report
The quantity of electricity required to deposit 180g of Ag from a molten silver trioxonitrate(V) is
[Ag = 108]
Answer Details
To determine the quantity of electricity required to deposit 180g of Ag (silver) from molten silver trioxonitrate(V), we need to understand the concept of electrolysis. During electrolysis, a metal can be deposited according to Faraday's laws of electrolysis.
The equivalent weight of a substance is calculated by dividing the atomic mass by the valency. For silver (Ag), the atomic mass is given as 108 and the valency of silver in AgNO3 is 1. This makes the equivalent weight of Ag 108 g/equivalent.
According to Faraday's first law of electrolysis:
Mass of substance deposited = (Equivalent weight × Quantity of electricity (in coulombs) ) / Faraday's constant (96500 C/mol)
Let's calculate the number of equivalents of silver deposited:
Number of equivalents of Ag = Mass of Ag / Equivalent weight = 180 g / 108 g/equivalent = 5/3 equivalents
The quantity of electricity required to deposit 1 equivalent of a substance is 1 Faraday (F) = 96500 C.
Therefore, the total quantity of electricity required:
Quantity of electricity = Number of equivalents × Faraday's constant
Quantity of electricity = (5/3 equivalents) × 1 F = 5/3 F = 1.67 F
Therefore, 1.67 Faraday is required to deposit 180g of Ag from a molten silver trioxonitrate(V).
Question 35 Report
If 11.0g of a gas occupies 5.6 dm3 at s.t.p., calculate its vapour density (1 mole of a gas occupies 22.4 dm3 ).
Answer Details
The problem requires calculating the **vapor density** of the gas. Vapor density is defined as the mass of a certain volume of a gas compared to the mass of an equal volume of hydrogen, where the hydrogen standard is 2 g/mol (as the molecular weight of hydrogen gas, H₂, is 2).
Here's a step-by-step explanation:
The calculated vapor density of the gas is 22.
Question 36 Report
The percentage of carbon(IV) oxide in air is
Answer Details
The air we breathe is made up of a mixture of gases. The most abundant gases in the atmosphere are nitrogen and oxygen, but there are other gases present in smaller amounts, one of which is carbon dioxide, chemically known as carbon(IV) oxide.
Carbon dioxide makes up approximately 0.03% of the Earth's atmosphere by volume. This value can also be expressed in different terms, such as 300 parts per million (ppm). Even though it is a small percentage, carbon dioxide plays a significant role in maintaining the Earth's temperature through the greenhouse effect.
In summary, the percentage of carbon(IV) oxide in air is 0.03%.
Question 37 Report
A typical chemical reaction will be spontaneous if
Answer Details
In thermodynamics, a chemical reaction is considered spontaneous when it occurs naturally under a given set of conditions without needing to be driven by an external force. The spontaneity of a reaction is best determined by the Gibbs Free Energy change, denoted as ΔG.
The criteria for spontaneity is as follows:
Now, let's relate this to the given options:
Thus, a chemical reaction is spontaneous when the Gibbs Free Energy change (ΔG) is negative.
Question 38 Report
Cx Hy O + 5O2 → 4CO2 + 4H2 O
Cx Hy O in the equation is
Answer Details
Cx Hy O + 5O2 → 4CO2 + 4H2 O
On balancing the equation, we should have
X = 4 , y = 8 and O = 2 ⇒ C4 H8 O2
Since 2 is a common factor to the three atoms, we can divide through by 2, considering the fact that that formula is not in the option.
We finally have C2 H4 O
Question 39 Report
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as
Answer Details
The reaction between alkanoic acids and alkanols in the presence of an acid catalyst is known as esterification.
An alkanoic acid, also known as a carboxylic acid, is a type of organic acid that contains a carboxyl group (-COOH). An alkanol, commonly referred to as an alcohol, contains a hydroxyl group (-OH).
When an alkanoic acid reacts with an alkanol in the presence of an acid catalyst (commonly sulfuric acid), they combine to form an ester and water. This particular reaction is termed esterification. The acid catalyst speeds up the reaction by donating protons, which helps in breaking and forming new bonds.
Here's a simplified view of the reaction:
1. Alkanoic Acid (R-COOH) + Alkanol (R'-OH) -> Ester (R-COOR') + Water (H2O)
The key characteristics of esterification are:
Therefore, in summary, the process described is esterification.
Question 40 Report
An example of a substance that does not change directly from solid to gas when heated is
Answer Details
When discussing the process of substances changing states, some substances can transition directly from a solid to a gas without passing through a liquid state. This process is called sublimation. However, not all substances exhibit this behavior. Let's examine the substances provided:
In conclusion, calcium carbonate (CaCO3) is the substance that does not change directly from a solid to a gas when heated, as it undergoes a decomposition process instead.
Would you like to proceed with this action?