Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
A charge of 4.6×10−5
C is placed in an electric field of intensity 3.2×104
Vm−1
. What is the force acting on the electron?
Answer Details
To calculate the force acting on the charge in an electric field, we can use the formula: F = q * E Where: F is the force acting on the charge, q is the charge of the particle, and E is the electric field intensity. In this case, the charge is given as 4.6 × 10^(-5) C and the electric field intensity is given as 3.2 × 10^4 V/m. Substituting these values into the formula: F = (4.6 × 10^(-5) C) * (3.2 × 10^4 V/m) To multiply numbers in scientific notation, we multiply the coefficients and add the exponents: F = (4.6 * 3.2) * (10^(-5 + 4)) C * V/m F = 14.72 * 10^(-1) C * V/m To simplify, we can convert the result to standard form: F = 1.472 C * V/m Therefore, the force acting on the charge is **1.472 N**.
Question 2 Report
An explosion occurs at an altitude of 312 m above the ground. If the air temperature is -10.00°C, how long does it take the sound to reach the ground?
[velocity of sound at 0 deg = 331 ms-1]
Question 3 Report
Which of the following is a type of incandescent light source?
Answer Details
The Tungsten filament lamp is a type of incandescent light source.
An incandescent light source works by using electricity to heat a filament inside the bulb until it becomes so hot that it emits light. In a tungsten filament lamp, the filament is made of tungsten, which is a metal that has a very high melting point. This allows the filament to get extremely hot without melting.
When an electric current passes through the filament, it heats up and starts to glow, producing visible light. The light emitted by a tungsten filament lamp is actually a result of the high temperature, which causes the atoms in the filament to vibrate and release energy in the form of light.
Incandescent light sources like tungsten filament lamps have been widely used for many years because they produce a warm, yellowish light that is similar to natural sunlight. However, they are not very energy-efficient, as a significant amount of the electrical energy is converted into heat rather than light.
In recent years, there has been a shift towards more energy-efficient alternatives like LED lamps and fluorescent lamps. LED lamps use a different mechanism to produce light, using a semiconductor that emits light when electric current passes through it. Fluorescent lamps use a gas-filled tube that emits ultraviolet light when electric current flows through it, and this ultraviolet light is then converted into visible light by a phosphor coating inside the tube.
So, in summary, the tungsten filament lamp is the type of incandescent light source among the options given. It works by heating a tungsten filament to a very high temperature, causing it to emit light. However, it is less energy-efficient compared to LED and fluorescent lamps.
Question 4 Report
Which of the following statements is correct about the angle of dip at various points on Earth?
Answer Details
The correct statement about the angle of dip at various points on Earth is: The angle of dip is zero at the equator and 90 degrees at the magnetic poles.
The angle of dip, also known as the inclination, refers to the angle between the Earth's magnetic field lines and the horizontal plane at a specific location. It tells us how much the magnetic field lines of the Earth are inclined or tilted at that point.
At the equator, the angle of dip is zero. This means that the magnetic field lines are parallel to the horizontal plane. As we move closer to the magnetic poles, the angle of dip increases. At the magnetic poles, the angle of dip is 90 degrees, indicating that the magnetic field lines are perpendicular to the horizontal plane.
The second statement that the angle of dip is greater at higher altitudes than at lower altitudes is incorrect. The angle of dip is primarily affected by the latitude or distance from the equator and the proximity to the magnetic poles, rather than the altitude. So, the angle of dip remains consistent at a specific latitude regardless of the altitude above sea level.
The third statement that the angle of dip is positive in the northern hemisphere and negative in the southern hemisphere is also incorrect. The angle of dip is positive in the northern hemisphere and negative in the southern hemisphere. This means that the magnetic field lines are inclined downwards in the northern hemisphere and upwards in the southern hemisphere.
The fourth statement that the angle of dip is constant at all points on Earth is incorrect as well. The angle of dip varies depending on the latitude and the proximity to the magnetic poles, as explained earlier. So, it is not constant across all points on Earth.
To summarize, the correct statement is that the angle of dip is zero at the equator and 90 degrees at the magnetic poles. It is important to note that the angle of dip is not affected by altitude but is primarily determined by latitude and proximity to the magnetic poles.
Question 5 Report
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Answer Details
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Question 6 Report
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Answer Details
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Question 7 Report
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Answer Details
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Question 8 Report
Question 9 Report
A positively charged particle is placed near a negatively charged particle. What is the direction of the electric force between the two particles?
Answer Details
The correct answer is The electric force is directed from the positive particle to the negative particle.
When a positively charged particle is placed near a negatively charged particle, they exert an attractive force on each other. This force is called the electric force.
According to Coulomb's Law, the electric force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the positively charged particle has a positive charge and the negatively charged particle has a negative charge. Since opposite charges attract each other, the electric force between them is attractive.
Therefore, the electric force is directed from the positive particle to the negative particle.
Question 10 Report
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. If the frequency of the light is increased, what happens to the stopping potential?
Answer Details
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. This is because the energy of the photons in the light is not enough to overcome the work function of the metal, which is the minimum amount of energy required to remove an electron from the metal surface.
If the frequency of the light is increased, it means that the energy of the photons increases. This increase in energy means that there is now enough energy to overcome the work function of the metal. As a result, photoelectrons are now emitted from the metal surface.
Now, let's consider the stopping potential. The stopping potential is the minimum potential difference that needs to be applied across a pair of electrodes in order to stop the flow of photoelectrons from reaching the other electrode.
When the frequency of the light is increased, the energy of the photons also increases. This means that the photoelectrons have more kinetic energy when they are emitted from the metal surface. As a result, a higher stopping potential is required to stop the more energetic photoelectrons from reaching the other electrode.
Therefore, the stopping potential increases when the frequency of the light is increased.
Question 11 Report
Which of the following is NOT a limitation of experimental measurements?
Answer Details
Instrument resolution is not a limitation of experimental measurements. It is the smallest change in a measured quantity that can be detected by an instrument. While instrument resolution limits the accuracy of a measurement, it is not a limitation of experimental measurements itself.
Question 12 Report
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Answer Details
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Question 13 Report
On a particular hot day, the temperature is 40°C and the partial pressure of water vapor in the air is 38.8 mmHg. What is the relative humidity?
Answer Details
To calculate the relative humidity, we need to understand the concept of saturation and how much water vapor the air can hold at a given temperature.
Saturation is the point at which the air is holding the maximum amount of water vapor it can hold at a particular temperature. Once the air reaches saturation, any additional moisture will start to condense into liquid water.
The amount of water vapor that the air can hold increases with temperature. Warmer air can hold more water vapor, while cooler air can hold less.
Now, let's calculate the relative humidity using the given information:
1. Find the saturation vapor pressure at 40°C: - The saturation vapor pressure is the maximum amount of water vapor the air can hold at a specific temperature. - At 40°C, the saturation vapor pressure is approximately 55.3 mmHg.
2. Calculate the relative humidity: - Relative humidity is the ratio of the current partial pressure of water vapor to the saturation vapor pressure, expressed as a percentage. - Relative Humidity = (Partial pressure of water vapor / Saturation vapor pressure) * 100 - In this case, the partial pressure of water vapor is 38.8 mmHg and the saturation vapor pressure at 40°C is 55.3 mmHg. - Plugging in these values into the formula, we get: Relative Humidity = (38.8 mmHg / 55.3 mmHg) * 100 = 70.2%
Therefore, the relative humidity on this particular hot day is approximately 70%.
Answer: The correct option is 70.
Question 14 Report
The number of holes in an intrinsic semiconductor
Answer Details
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Question 15 Report
Which process is responsible for production of energy in stars?
Answer Details
The process responsible for the production of energy in stars is nuclear fusion.
Nuclear fusion is the process where two or more atomic nuclei come together to form a heavier nucleus. In stars, the fusion of hydrogen nuclei (protons) into helium nuclei is the main source of energy.
Here's how it works:
This ongoing fusion process in stars is called stellar nucleosynthesis. It occurs throughout the star's lifetime until the available hydrogen in the core is depleted. At this point, depending on the star's mass, different fusion reactions may take place, leading to the production of heavier elements.
In summary, nuclear fusion, the fusion of hydrogen nuclei into helium nuclei, is the process responsible for the production of energy in stars.
Question 16 Report
Which of the following liquids has the highest surface tension?
Answer Details
Surface tension is a property of liquids that arises due to the cohesive forces between the molecules at the surface. It can be thought of as the "skin" or "film" that forms on the surface of a liquid.
Considering the options given:
- Water: Water molecules have strong cohesive forces, allowing them to form hydrogen bonds with each other. As a result, water has relatively high surface tension.
- Mercury: Mercury is a metal with metallic bonding, which is much stronger than the cohesive forces in liquids. As a result, mercury has very high surface tension.
- Oil: Oils typically consist of nonpolar molecules, which have weaker cohesive forces compared to polar molecules like water. Therefore, oil generally has lower surface tension than water.
Based on this information, we can conclude that mercury has the highest surface tension among these liquids.
Question 17 Report
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Answer Details
Question 18 Report
The pinhole camera works on
Answer Details
The pinhole camera works on the principle of the rectilinear propagation of light. This principle states that light travels in straight lines. When light passes through the tiny hole in a pinhole camera, it forms an inverted image on the opposite side of the camera. The size of the image depends on the distance between the object and the pinhole.
Question 19 Report
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Question 20 Report
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Answer Details
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Question 21 Report
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Answer Details
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Question 22 Report
How much work is done against the gravitational force on a 3.0 kg object when it is carried from the ground floor to the roof of a building, a vertical climb of 240 m?
Answer Details
To calculate the work done against gravitational force, we can use the formula:
Work = Force x Distance
In this case, the force we are working against is the gravitational force. The gravitational force is the force with which the Earth pulls objects towards its center. The formula for gravitational force is:
Force = Mass x Acceleration due to gravity
The mass of the object is given as 3.0 kg. The acceleration due to gravity on Earth is approximately 9.8 m/s^2.
Now, we need to find the distance the object is being carried, which is 240 m.
Plugging these values into the formulas, we have:
Force = 3.0 kg x 9.8 m/s^2 = 29.4 N
Work = 29.4 N x 240 m
Therefore, the work done against the gravitational force is equal to 29.4 N x 240 m = 7056 J = 7.1 kJ (rounded to one decimal place).
So, the correct answer is 7.2 kJ.
Question 23 Report
Which of the following is a type of wave that is both mechanical and longitudinal?
Answer Details
A wave that is both mechanical and longitudinal is sound waves.
Sound waves are created by the vibration of an object, such as a speaker, which causes the air particles around it to vibrate. These vibrations then travel through the air in the form of a wave.
Sound waves are classified as mechanical waves because they require a medium, such as air, water, or solid objects, to travel through. Without a medium, sound waves cannot propagate.
Furthermore, sound waves are classified as longitudinal waves because the particles in the medium vibrate parallel to the direction of the wave. This means that as the sound wave travels, the particles in the medium move back and forth in the same direction as the wave itself.
In contrast, water waves and seismic waves are mechanical waves, but they are not longitudinal. Water waves are categorized as transverse waves because the particles in the water move up and down at right angles to the direction of the wave. Seismic waves, which include earthquake waves, can be both transverse and longitudinal, but typically the primary seismic waves are classified as transverse waves.
Lastly, light waves are not mechanical waves but rather electromagnetic waves. They do not require a medium to travel through and can propagate in a vacuum, unlike sound waves.
Question 24 Report
Name the type of equilibrium for each position of the ball
Answer Details
To determine the type of equilibrium for each position of the ball, we need to understand what each type of equilibrium means. 1. **Unstable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position. In other words, the system is "unstable" and will not return to its original position on its own. 2. **Neutral equilibrium**: This occurs when a small disturbance or change in the system does not cause the object to move away from its equilibrium position. The system remains in its new position without any tendency to return to its original position. 3. **Stable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position, but the system has a tendency to return to its original position on its own. Now, let's analyze each position of the ball: A - **Unstable equilibrium**: Suppose the ball is placed at position A. If the ball is slightly disturbed or moved from this position, it will roll away further from its original position and won't come back on its own. Hence, position A is an unstable equilibrium. B - **Stable equilibrium**: Suppose the ball is placed at position B. If the ball is slightly disturbed or moved from this position, it will oscillate back and forth but eventually come back to its original position. This indicates that position B is a stable equilibrium. C - **Neutral equilibrium**: Suppose the ball is placed at position C. If the ball is slightly disturbed or moved from this position, it will stay at the new position without any tendency to return to its original position. This identifies position C as a neutral equilibrium. Based on the explanations above, the correct answer is: A - unstable, B - stable, C - neutral.
Question 25 Report
Which of the following is NOT an example of elementary modern physics?
Answer Details
Classical mechanics is a branch of physics that deals with the motion of macroscopic objects. It is based on the principles of Newton's laws of motion and is not considered to be part of elementary modern physics.
The other three options, quantum mechanics, special relativity, and nuclear physics, are all considered to be part of elementary modern physics because they deal with the behavior of matter and energy at the atomic and subatomic levels.
Question 26 Report
Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?
[Speed of light c = 3 *10^8ms-1]
Question 27 Report
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Answer Details
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Question 28 Report
Which of the following is an example of a couple?
Answer Details
A couple is a pair of forces that are equal in magnitude but opposite in direction, and that are applied to a body at different points. The forces of a couple do not produce any translation, but they do produce a rotation.
Question 29 Report
The property of wave shown in the diagram above is?
Answer Details
The property of the wave shown in the diagram is diffraction.
Diffraction is the bending or spreading out of waves as they encounter an obstacle or pass through an opening. It occurs when waves encounter an obstacle that is comparable in size to their wavelength.
In the diagram, you can see that the wave is encountering an opening or a slit, and as a result, it is spreading out or bending around the edges of the opening. This bending or spreading out is characteristic of diffraction.
Diffraction is an important phenomenon in wave behavior and is observed in various situations, such as when sound waves pass through a doorway or when light waves pass through a narrow slit. It helps us understand how waves interact with obstacles and openings in their path.
In summary, the property of the wave shown in the diagram is diffraction, which is the bending or spreading out of waves as they encounter an obstacle or pass through an opening.
Question 30 Report
The half life of a radioactive material is 12 days. Calculate the decay constant.
Answer Details
The decay constant of a radioactive material represents the probability that an atom of the material will decay in a unit of time. In this case, we are given the half-life of the material which is the time it takes for half of the radioactive atoms to decay.
The relationship between the decay constant (λ) and the half-life (T½) is given by the formula:
λ = ln(2) / T½
where ln(2) is the natural logarithm of 2.
To find the decay constant, we can plug in the given half-life value into the formula. In this case, the half-life is 12 days.
λ = ln(2) / 12
Using a calculator, we can calculate the value of ln(2) ≈ 0.6931.
λ = 0.6931 / 12 ≈ 0.05775 day^(-1)
Therefore, the decay constant for this radioactive material is approximately 0.05775 day^(-1).
The correct answer is 0.05775 day^(-1).
Question 31 Report
In the diagram above, if the south poles of two magnets stroke a steel bar, the polarities at X and Y will respectively be
Answer Details
The polarities at X and Y would be north and north.
Question 32 Report
A generator manufacturing company accidentally made an AC generator instead of a DC generator. To fix this error,
Answer Details
An AC generator uses slip rings to transfer the induced current smoothly to the circuit. A DC generator uses split rings to transfer the induced current to the circuit and also convert the induced AC into pulsating DC. So, to convert an AC generator into a DC generator, the slip rings needs to be replaced with split rings.
Question 33 Report
A parallel plate capacitor separated by an air gap is made of 0.8m2 tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take εo = 8.85 * 10-12 Fm−1
Answer Details
To calculate the charge on each plate of a parallel plate capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. The capacitance of a parallel plate capacitor can be calculated using the formula C = εA/d, where C is the capacitance, ε is the permittivity of the medium (in this case, air), A is the area of each plate, and d is the distance between the plates. Given: Area of each plate (A) = 0.8 m^2 Distance between the plates (d) = 20 mm = 0.02 m Permittivity of air (ε) = 8.85 x 10^-12 F/m Using the formula for capacitance, we can calculate C: C = εA/d = (8.85 x 10^-12 F/m)(0.8 m^2)/(0.02 m) = 8.85 x 10^-12 F/m * 40 F = 3.54 x 10^-10 F Now, we can use the formula Q = CV to calculate the charge on each plate: Q = (3.54 x 10^-10 F)(120 V) = 4.25 x 10^-8 C = 42.5 x 10^-9 C = 42.5 nC Therefore, the charge on each plate of the parallel plate capacitor is **42.5 nC**.
Question 34 Report
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Answer Details
Question 35 Report
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Answer Details
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Question 36 Report
A travelling wave of amplitude 0.80 m has a frequency of 16 Hz and a wave speed of 20 ms-1
Calculate the wave number of the wave.
Answer Details
The wave number of a wave is defined as the number of wavelengths per unit distance. It represents the spatial frequency of the wave.
In this case, the wave has a frequency of 16 Hz, which means it completes 16 cycles or oscillations per second. Each cycle corresponds to one wavelength.
The wave speed is given as 20 m/s, which is the speed at which the wave propagates through the medium.
To calculate the wave number, we can use the formula:
Wave number (k) = 2? / wavelength (?)
First, we need to find the wavelength of the wave. We can use the formula:
Wave speed (v) = frequency (f) x wavelength (?)
Rewriting the formula, we have:
Wavelength (?) = wave speed (v) / frequency (f)
Substituting the given values, we have:
Wavelength (?) = 20 m/s / 16 Hz
Simplifying the expression, we get:
Wavelength (?) = 1.25 m
Now, we can calculate the wave number using the formula:
Wave number (k) = 2? / wavelength (?)
Substituting the value of the wavelength, we get:
Wave number (k) = 2? / 1.25 m
Simplifying the expression, we get:
Wave number (k) ? 5.03
Therefore, the wave number of the wave is approximately 5.
Question 37 Report
Which of the following is/are not true about the heat capacity of a substance?
(i) It is an intensive property
(ii) Its S.I unit is jK−1
(iii) It is an extensive property
(iv) Its S.I unit is jkg−1
Answer Details
The correct answer is (ii) and (iii) only. The heat capacity of a substance is a measure of how much heat energy is required to raise the temperature of the substance by a certain amount. It is an important property in thermodynamics. (i) It is not true that heat capacity is an intensive property. Intensive properties do not depend on the size or amount of the substance. For example, density and temperature are intensive properties. However, heat capacity does depend on the size or amount of the substance. The heat capacity of a substance increases with its mass or amount. Therefore, statement (i) is false. (ii) It is true that the SI unit of heat capacity is joules per kelvin (J/K). Heat capacity is defined as the amount of heat energy (in joules) required to raise the temperature of a substance by 1 degree kelvin. Therefore, statement (ii) is true. (iii) It is not true that heat capacity is an extensive property. Extensive properties depend on the size or amount of the substance. Examples of extensive properties include mass and volume. However, heat capacity is an intensive property as explained earlier. Therefore, statement (iii) is false. (iv) It is true that the SI unit of heat capacity is joules per kilogram per kelvin (J/(kg·K)). This unit is commonly used for specific heat capacity, which is the heat capacity per unit mass. Therefore, statement (iv) is true. In summary, the correct statement is that (ii) and (iii) are not true about the heat capacity of a substance.
Question 38 Report
A missile is launched with a speed of 75 ms-1 at an angle of 22° above the surface of a warship. Find the horizontal range achieved by the missile. Ignore the effects of air resistance.
[Take g = 10 ms-1]
Question 39 Report
Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis
Answer Details
Question 40 Report
How much net work is required to accelerate a 1200 kg car from 10 ms-1 to 15 ms-1
Answer Details
Would you like to proceed with this action?