Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from −10oC to 10oC ?
[specific latent heat of fusion of ice = 3.34 x 105 Jkg−1, Specific heat capacity of water = 4200 Jkg−1 k−1
Specific heat capacity of ice = 2100 Jkg−1k−1
Question 2 Report
The number of holes in an intrinsic semiconductor
Answer Details
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Question 3 Report
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Answer Details
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Question 4 Report
An explosion occurs at an altitude of 312 m above the ground. If the air temperature is -10.00°C, how long does it take the sound to reach the ground?
[velocity of sound at 0 deg = 331 ms-1]
Question 5 Report
Which of the following liquids has the highest surface tension?
Answer Details
Surface tension is a property of liquids that arises due to the cohesive forces between the molecules at the surface. It can be thought of as the "skin" or "film" that forms on the surface of a liquid.
Considering the options given:
- Water: Water molecules have strong cohesive forces, allowing them to form hydrogen bonds with each other. As a result, water has relatively high surface tension.
- Mercury: Mercury is a metal with metallic bonding, which is much stronger than the cohesive forces in liquids. As a result, mercury has very high surface tension.
- Oil: Oils typically consist of nonpolar molecules, which have weaker cohesive forces compared to polar molecules like water. Therefore, oil generally has lower surface tension than water.
Based on this information, we can conclude that mercury has the highest surface tension among these liquids.
Question 6 Report
Which of the following is NOT a limitation of experimental measurements?
Answer Details
Instrument resolution is not a limitation of experimental measurements. It is the smallest change in a measured quantity that can be detected by an instrument. While instrument resolution limits the accuracy of a measurement, it is not a limitation of experimental measurements itself.
Question 7 Report
A piano wire 50 cm long has a total mass of 10 g and its stretched with a tension of 800 N. Find the frequency of the wire when it sounds its third overtone note.
Answer Details
T=800N; I=50cm=0.5m,
m=10g=0.01kg
fundamental freq: fo
=?
fo
= 121√Tμ
μ =m1
=0.010.5
⇒ fo
=12×0.5
√8000.02
fo
⇒√ 40,000
⇒1st overtone = 2fo
=2×200 = 400Hz
⇒2nd overtone =3fo
=3×200=600Hz
∴3rd over tone= 4fo
=4×200=800Hz
Question 8 Report
Question 9 Report
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Answer Details
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Question 10 Report
Which of the following is NOT an example of elementary modern physics?
Answer Details
Classical mechanics is a branch of physics that deals with the motion of macroscopic objects. It is based on the principles of Newton's laws of motion and is not considered to be part of elementary modern physics.
The other three options, quantum mechanics, special relativity, and nuclear physics, are all considered to be part of elementary modern physics because they deal with the behavior of matter and energy at the atomic and subatomic levels.
Question 11 Report
The terminals of a battery of emf 24.0 V and internal resistance of 1.0 Ω is connected to an external resistor 5.0 Ω. Find the terminal p.d.
Answer Details
To find the terminal p.d. (potential difference), we need to consider the concept of voltage in a circuit. Voltage is the amount of electrical energy per unit charge provided by a power source, in this case, the battery.
In this problem, we are given:
EMF (electromotive force) of the battery = 24.0 V
Internal resistance of the battery = 1.0 Ω
External resistor = 5.0 Ω
When the battery is connected to the external resistor, a current will flow in the circuit. This current is determined by Ohm's law, which states that the current flowing in a circuit is directly proportional to the voltage applied and inversely proportional to the resistance:
I = V / R
where:
I is the current flowing in the circuit
V is the voltage applied
R is the resistance of the circuit
In this case, the voltage applied is the emf of the battery, and the resistance is the sum of the internal resistance and the external resistor.
We can calculate the current flowing in the circuit:
I = 24.0V / (1.0Ω + 5.0Ω) = 24.0V / 6.0Ω = 4.0A
Now, the terminal p.d. is the voltage drop across the external resistor. We can calculate it using Ohm's law:
V = I * R
Substituting the values:
V = 4.0A * 5.0Ω = 20.0V
Therefore, the terminal p.d. is 20.0V.
Question 12 Report
Which of the following types of electromagnetic waves is used in night vision goggles?
Answer Details
Night vision goggles use infrared waves to enable the user to see in the dark.
Infrared waves are a type of electromagnetic radiation that have longer wavelengths than visible light. They fall between the visible and microwave regions on the electromagnetic spectrum. Unlike visible light, which is visible to the human eye, infrared waves cannot be seen without the use of specialized devices such as night vision goggles.
When it is dark, objects do not emit visible light that can be detected by the human eye. However, they do emit heat in the form of infrared radiation. Night vision goggles work by detecting and amplifying this infrared radiation, which is then converted into visible light that can be seen by the user.
The goggles contain an image intensifier tube that is sensitive to infrared radiation. This tube amplifies the incoming infrared light and converts it into an image that can be seen through the goggles. The resulting image appears green because the human eye is more sensitive to green light.
Therefore, to see in the dark, night vision goggles use infrared waves to detect and amplify the infrared radiation emitted by objects. This enables the user to have enhanced vision in low-light conditions or complete darkness.
Question 13 Report
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Answer Details
Question 14 Report
The half life of a radioactive material is 12 days. Calculate the decay constant.
Answer Details
The decay constant of a radioactive material represents the probability that an atom of the material will decay in a unit of time. In this case, we are given the half-life of the material which is the time it takes for half of the radioactive atoms to decay.
The relationship between the decay constant (λ) and the half-life (T½) is given by the formula:
λ = ln(2) / T½
where ln(2) is the natural logarithm of 2.
To find the decay constant, we can plug in the given half-life value into the formula. In this case, the half-life is 12 days.
λ = ln(2) / 12
Using a calculator, we can calculate the value of ln(2) ≈ 0.6931.
λ = 0.6931 / 12 ≈ 0.05775 day^(-1)
Therefore, the decay constant for this radioactive material is approximately 0.05775 day^(-1).
The correct answer is 0.05775 day^(-1).
Question 15 Report
A relative density bottle has a mass of 19 g when empty. When it is completely filled with water, its mass is 66 g. What will be its mass if completely filled with alcohol of relative density 0.8?
Answer Details
Let mb=mass of empty bottle,
mw
=mass of water only and
ma
= mass of alcohol only
given; mb
=19g
mb
+ mw
= 66g
mb
+ ma
= ?
R.d=0.8
R.d=mass of alcohol
massofalcoholmassofequalvolumeofwater
mass of equal volume of water = mw
=66-19=47g
0.8 = ma47
ma
=0.8×47 =37.6g
mb
+ ma
= 19+37.6=56.6g
Question 16 Report
A generator manufacturing company accidentally made an AC generator instead of a DC generator. To fix this error,
Answer Details
An AC generator uses slip rings to transfer the induced current smoothly to the circuit. A DC generator uses split rings to transfer the induced current to the circuit and also convert the induced AC into pulsating DC. So, to convert an AC generator into a DC generator, the slip rings needs to be replaced with split rings.
Question 17 Report
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Answer Details
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Question 18 Report
How much work is done against the gravitational force on a 3.0 kg object when it is carried from the ground floor to the roof of a building, a vertical climb of 240 m?
Answer Details
To calculate the work done against gravitational force, we can use the formula:
Work = Force x Distance
In this case, the force we are working against is the gravitational force. The gravitational force is the force with which the Earth pulls objects towards its center. The formula for gravitational force is:
Force = Mass x Acceleration due to gravity
The mass of the object is given as 3.0 kg. The acceleration due to gravity on Earth is approximately 9.8 m/s^2.
Now, we need to find the distance the object is being carried, which is 240 m.
Plugging these values into the formulas, we have:
Force = 3.0 kg x 9.8 m/s^2 = 29.4 N
Work = 29.4 N x 240 m
Therefore, the work done against the gravitational force is equal to 29.4 N x 240 m = 7056 J = 7.1 kJ (rounded to one decimal place).
So, the correct answer is 7.2 kJ.
Question 19 Report
Calculate the absolute pressure at the bottom of a lake at a depth of 32.8 m. Assume the density of the water is 1 x 10-3 kgm-3 and the air above is at a pressure of 101.3 kPa.
[Take g = 9.8 ms-2]
Question 20 Report
Which of the following statements is correct about the angle of dip at various points on Earth?
Answer Details
The correct statement about the angle of dip at various points on Earth is: The angle of dip is zero at the equator and 90 degrees at the magnetic poles.
The angle of dip, also known as the inclination, refers to the angle between the Earth's magnetic field lines and the horizontal plane at a specific location. It tells us how much the magnetic field lines of the Earth are inclined or tilted at that point.
At the equator, the angle of dip is zero. This means that the magnetic field lines are parallel to the horizontal plane. As we move closer to the magnetic poles, the angle of dip increases. At the magnetic poles, the angle of dip is 90 degrees, indicating that the magnetic field lines are perpendicular to the horizontal plane.
The second statement that the angle of dip is greater at higher altitudes than at lower altitudes is incorrect. The angle of dip is primarily affected by the latitude or distance from the equator and the proximity to the magnetic poles, rather than the altitude. So, the angle of dip remains consistent at a specific latitude regardless of the altitude above sea level.
The third statement that the angle of dip is positive in the northern hemisphere and negative in the southern hemisphere is also incorrect. The angle of dip is positive in the northern hemisphere and negative in the southern hemisphere. This means that the magnetic field lines are inclined downwards in the northern hemisphere and upwards in the southern hemisphere.
The fourth statement that the angle of dip is constant at all points on Earth is incorrect as well. The angle of dip varies depending on the latitude and the proximity to the magnetic poles, as explained earlier. So, it is not constant across all points on Earth.
To summarize, the correct statement is that the angle of dip is zero at the equator and 90 degrees at the magnetic poles. It is important to note that the angle of dip is not affected by altitude but is primarily determined by latitude and proximity to the magnetic poles.
Question 21 Report
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Answer Details
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Question 22 Report
Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?
[Speed of light c = 3 *10^8ms-1]
Question 23 Report
The sensitivity of a thermometer is
Answer Details
The sensitivity of a thermometer refers to the smallest temperature change that it can detect or measure. In other words, it measures how fine or precise the thermometer is in detecting changes in temperature. A thermometer with high sensitivity is able to detect even small changes in temperature, while a thermometer with low sensitivity may only detect larger temperature fluctuations.
Therefore, in the given options, the statement "the smallest temperature change that can be detected or measured" accurately describes the sensitivity of a thermometer.
Question 24 Report
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. If the frequency of the light is increased, what happens to the stopping potential?
Answer Details
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. This is because the energy of the photons in the light is not enough to overcome the work function of the metal, which is the minimum amount of energy required to remove an electron from the metal surface.
If the frequency of the light is increased, it means that the energy of the photons increases. This increase in energy means that there is now enough energy to overcome the work function of the metal. As a result, photoelectrons are now emitted from the metal surface.
Now, let's consider the stopping potential. The stopping potential is the minimum potential difference that needs to be applied across a pair of electrodes in order to stop the flow of photoelectrons from reaching the other electrode.
When the frequency of the light is increased, the energy of the photons also increases. This means that the photoelectrons have more kinetic energy when they are emitted from the metal surface. As a result, a higher stopping potential is required to stop the more energetic photoelectrons from reaching the other electrode.
Therefore, the stopping potential increases when the frequency of the light is increased.
Question 25 Report
Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis
Answer Details
Question 26 Report
The pinhole camera works on
Answer Details
The pinhole camera works on the principle of the rectilinear propagation of light. This principle states that light travels in straight lines. When light passes through the tiny hole in a pinhole camera, it forms an inverted image on the opposite side of the camera. The size of the image depends on the distance between the object and the pinhole.
Question 27 Report
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Answer Details
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Question 28 Report
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is
Answer Details
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is adhesive to water.
Adhesion is the attraction between different substances, in this case, water and wood. Wood is a porous material, meaning it has tiny holes or gaps in its surface. These tiny holes create a large surface area for the water droplet to interact with.
When the water droplet comes into contact with the wood, the adhesive forces between the water molecules and the wood molecules are stronger than the cohesive forces between the water molecules. This causes the water droplet to spread out, trying to maximize its contact with the wood surface.
The spreading out of the water droplet forms a thin layer because the wood surface is not completely smooth. Instead, it has irregularities and imperfections, which allow the water to seep into those gaps and spread out further.
Therefore, when a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer due to the adhesive forces between the water and the wood surface.
Question 29 Report
What is the name of the model of the atom that describes electrons as orbiting the nucleus in specific energy levels?
Answer Details
The name of the model of the atom that describes electrons as orbiting the nucleus in specific energy levels is the Bohr model.
The Bohr model was proposed by Danish physicist Niels Bohr in 1913. According to this model, electrons revolve around the nucleus in specific energy levels or shells. Each energy level corresponds to a certain amount of energy that an electron possesses. The energy levels are represented by whole numbers, with the closest energy level to the nucleus having the lowest energy and subsequent energy levels having higher energies.
Bohr's model also stated that electrons can only exist in certain fixed orbits around the nucleus. These orbits have a specific distance from the nucleus and are called stationary states. Electrons can move between these energy levels by absorbing or emitting energy in the form of photons.
The Bohr model successfully explained the observed emission and absorption spectra of atoms, as well as the stability of atoms. However, it has limitations in fully describing the behavior of electrons. It does not accurately represent the path or trajectory of electrons and does not account for other quantum effects.
Overall, the Bohr model provides a simplified and understandable framework for visualizing the arrangement of electrons in an atom, with electrons occupying specific energy levels or shells around the nucleus.
Question 30 Report
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Answer Details
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Question 31 Report
An object is placed 35 cm away from a convex mirror with a focal length of magnitude 15 cm. What is the location of the image?
Answer Details
Let's understand how a convex mirror forms images. In a convex mirror, the center of curvature and the focal point lie behind the mirror. Convex mirrors always produce virtual, upright, and diminished images.
Here, we are given that the object is placed 35 cm away from the convex mirror and the mirror has a focal length of 15 cm.
To find the location of the image, we can use the mirror formula, which states:
1/f = 1/v - 1/u
Where: - f is the focal length of the mirror, - v is the distance of the image from the mirror (negative for virtual image), - u is the distance of the object from the mirror (negative for real object in front of the mirror).
In this case, f = 15 cm and u = -35 cm (negative because the object is in front of the mirror).
Substituting these values into the formula, we get:
1/15 = 1/v - 1/-35
Simplifying the equation, we get:
1/v = 1/15 + 1/35
To add the fractions, we find the common denominator, which is 105. Then, we have:
1/v = (7 + 3)/105
1/v = 10/105
Simplifying further, we get:
1/v = 2/21
To solve for v, we take the reciprocal on both sides of the equation:
v = 21/2
Therefore, the location of the image is 10.5 cm behind the mirror.
Question 32 Report
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Answer Details
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Question 33 Report
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Answer Details
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Question 34 Report
A charge of 4.6×10−5
C is placed in an electric field of intensity 3.2×104
Vm−1
. What is the force acting on the electron?
Answer Details
To calculate the force acting on the charge in an electric field, we can use the formula: F = q * E Where: F is the force acting on the charge, q is the charge of the particle, and E is the electric field intensity. In this case, the charge is given as 4.6 × 10^(-5) C and the electric field intensity is given as 3.2 × 10^4 V/m. Substituting these values into the formula: F = (4.6 × 10^(-5) C) * (3.2 × 10^4 V/m) To multiply numbers in scientific notation, we multiply the coefficients and add the exponents: F = (4.6 * 3.2) * (10^(-5 + 4)) C * V/m F = 14.72 * 10^(-1) C * V/m To simplify, we can convert the result to standard form: F = 1.472 C * V/m Therefore, the force acting on the charge is **1.472 N**.
Question 35 Report
The working of the beam balance is based on the principle of
Answer Details
The working of the beam balance is based on the principle of moments.
Moments, also known as torques, are a measure of the turning effect of a force. In the case of the beam balance, it is the moments that help determine the equilibrium or balance of the system.
The beam balance consists of a beam or lever that is supported at a pivot point called the fulcrum. On either end of the beam, there are pans where the objects to be weighed are placed.
When objects of different weights are placed on the pans, the beam becomes unbalanced. This causes the beam to tilt towards the side with the heavier object. However, in order to achieve equilibrium or balance, the moments on both sides of the beam must be equal.
The moment of a force is calculated by multiplying the magnitude of the force by the perpendicular distance from the point of rotation (the fulcrum) to the line of action of the force.
By adjusting the position of the counterweights or by moving the objects on the pans, the moment on each side of the beam can be balanced, resulting in the beam becoming level or horizontal. This indicates that the weights on both sides are equal.
Therefore, the beam balance operates on the principle of moments, where the balance is achieved by equalizing the moments on both sides of the fulcrum.
Question 36 Report
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Answer Details
Question 37 Report
A positively charged particle is placed near a negatively charged particle. What is the direction of the electric force between the two particles?
Answer Details
The correct answer is The electric force is directed from the positive particle to the negative particle.
When a positively charged particle is placed near a negatively charged particle, they exert an attractive force on each other. This force is called the electric force.
According to Coulomb's Law, the electric force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the positively charged particle has a positive charge and the negatively charged particle has a negative charge. Since opposite charges attract each other, the electric force between them is attractive.
Therefore, the electric force is directed from the positive particle to the negative particle.
Question 38 Report
A parallel plate capacitor separated by an air gap is made of 0.8m2 tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take εo = 8.85 * 10-12 Fm−1
Answer Details
To calculate the charge on each plate of a parallel plate capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. The capacitance of a parallel plate capacitor can be calculated using the formula C = εA/d, where C is the capacitance, ε is the permittivity of the medium (in this case, air), A is the area of each plate, and d is the distance between the plates. Given: Area of each plate (A) = 0.8 m^2 Distance between the plates (d) = 20 mm = 0.02 m Permittivity of air (ε) = 8.85 x 10^-12 F/m Using the formula for capacitance, we can calculate C: C = εA/d = (8.85 x 10^-12 F/m)(0.8 m^2)/(0.02 m) = 8.85 x 10^-12 F/m * 40 F = 3.54 x 10^-10 F Now, we can use the formula Q = CV to calculate the charge on each plate: Q = (3.54 x 10^-10 F)(120 V) = 4.25 x 10^-8 C = 42.5 x 10^-9 C = 42.5 nC Therefore, the charge on each plate of the parallel plate capacitor is **42.5 nC**.
Question 39 Report
Name the type of equilibrium for each position of the ball
Answer Details
To determine the type of equilibrium for each position of the ball, we need to understand what each type of equilibrium means. 1. **Unstable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position. In other words, the system is "unstable" and will not return to its original position on its own. 2. **Neutral equilibrium**: This occurs when a small disturbance or change in the system does not cause the object to move away from its equilibrium position. The system remains in its new position without any tendency to return to its original position. 3. **Stable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position, but the system has a tendency to return to its original position on its own. Now, let's analyze each position of the ball: A - **Unstable equilibrium**: Suppose the ball is placed at position A. If the ball is slightly disturbed or moved from this position, it will roll away further from its original position and won't come back on its own. Hence, position A is an unstable equilibrium. B - **Stable equilibrium**: Suppose the ball is placed at position B. If the ball is slightly disturbed or moved from this position, it will oscillate back and forth but eventually come back to its original position. This indicates that position B is a stable equilibrium. C - **Neutral equilibrium**: Suppose the ball is placed at position C. If the ball is slightly disturbed or moved from this position, it will stay at the new position without any tendency to return to its original position. This identifies position C as a neutral equilibrium. Based on the explanations above, the correct answer is: A - unstable, B - stable, C - neutral.
Question 40 Report
A 400 N box is being pushed across a level floor at a constant speed by a force P of 100 N at an angle of 30.0° to the horizontal, as shown in the the diagram below. What is the coefficient of kinetic friction between the box and the floor?
Answer Details
W = 400 N; P = 100 N; θ = 30o; μ = ?
Frictional force (Fr) = μR (where R is the normal reaction)
The forces acting along the horizontal direction are Fr and Px
∴ Pcos 30° - Fr = ma (Pcos 30° is acting in the +ve x-axis while Fr in the -ve x-axis)
⇒ 100cos 30° - μR = ma
Since the box is moving at constant speed, its acceleration is zero
⇒ 100cos 30° - μR = 0
⇒ 100cos 30o = μR ----- (i)
The forces acting in the vertical direction are W, Py and R
∴ R - Psin 30° - W = 0 (R is acting upward (+ve) while Py and W are acting downward (-ve) and they are at equilibrium)
⇒ R - 100sin 30° - 400 = 0
⇒ R = 100sin 30° + 400
⇒ R = 50 + 400 = 450 N
From equation (i)
⇒ 100cos 30° = 450μ
⇒μ=100cos30°
N = 100cos30°450
= μ = 0.19
Would you like to proceed with this action?