Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
An example of a non-rechargeable cell is
Answer Details
A non-rechargeable cell, commonly known as a primary cell, is a type of chemical battery that is designed to be used once until the chemical reactions that produce electricity are exhausted. After this point, the cell cannot be reversed or recharged.
In the given examples, the dry leclanche cell is a well-known example of a non-rechargeable cell. It is commonly used in everyday devices like remote controls, wall clocks, and torches. This cell type utilizes zinc and manganese dioxide as electrodes and relies on a moist paste of ammonium chloride for the electrolyte.
The other examples, such as nickel iron, mercury cadmium, and lead-acid, involve rechargeable cells (secondary cells) that are specifically designed to endure multiple charges and discharges throughout their useful life. Thus, unlike the dry leclanche cell, these can be recharged after use.
Therefore, the dry leclanche cell is an ideal example of a non-rechargeable cell because it can only be used once. After depletion, it cannot be recharged or reused.
Question 2 Report
In electrolysis, when same quantity of electricity is passed through different electrolytes, mass of substances deposited is proportional to
Answer Details
In electrolysis, when the same quantity of electricity is passed through different electrolytes, the mass of substances deposited is proportional to their chemical equivalent. The reason for this lies in Faraday's laws of electrolysis. Faraday's second law states that the amounts of different substances deposited or liberated by the same quantity of electricity are proportional to their chemical equivalents.
Chemical equivalent refers to a measure of a substance's ability to react or be deposited during electrolysis, and it is calculated as the molar mass divided by valency (n). This is why it is sometimes also referred to as equivalent weight.
In essence, for a given charge (equal number of electrons or electricity), a substance with a lower chemical equivalent will deposit more mass because it requires fewer electrons to undergo the chemical change.
Question 3 Report
What is the colour of red rose under a blue light?
Answer Details
To understand the color of a red rose under a blue light, we need to consider how we perceive color. Objects appear colored because they reflect certain wavelengths of light. A red rose appears red in white light because it reflects red wavelengths and absorbs others.
When you shine blue light on a red rose, the situation changes. A blue light primarily contains blue wavelengths. Since the red rose does not have red wavelengths to reflect anymore, and it cannot reflect blue light (as it absorbs it), the rose will appear to be the absence of any reflected wavelength visible to our eyes.
This means the rose will appear black under blue light, as black is perceived when no visible light is reflected into our eyes. Thus, the color of the red rose under a blue light is black.
Question 4 Report
An object is placed 25cm in front of a convex mirror has its image formed 5cm behind the mirror. what is the focal length of the convex mirror
Answer Details
Object distance (u) = -25 cm (negative because the object is in front of the mirror)
Image distance (v) = +5 cm (positive because the image is behind the convex mirror)
Using 1f = 1u + 1v
1f = 1−25 + 15
f = 254 = 6.250cm.
Question 5 Report
The unit of impedance is
Answer Details
The unit of impedance is Ohm, which is symbolized by the Greek letter Ω (Omega). In electrical circuits, impedance (Z) is a measure of opposition that a circuit offers to the passage of electric current when a voltage is applied. It is similar to resistance but extends to alternating currents (AC) and contains the effects of resistance as well as reactance (which accounts for capacitors and inductors).
Just like resistance, the unit of impedance is the ohm because they measure similar concepts; however, impedance also accounts for phase shifts between voltage and current, which are not considered in simple resistance. Ohm's Law is used in AC circuits as Z = V/I, where Z is impedance, V is voltage, and I is current. This relationship shows why the unit of impedance is the same as that of resistance.
Question 6 Report
Convert 60ºC to degree Fahrenheit
Answer Details
To convert temperatures from Celsius to Fahrenheit, we use the formula:
F = (C × 9/5) + 32
Here, F represents the temperature in Fahrenheit, and C represents the temperature in Celsius.
Let's use this formula to convert 60ºC to Fahrenheit:
F = (60 × 9/5) + 32
First, multiply 60 by 9/5:
60 × 9/5 = 108
Next, add 32 to 108:
108 + 32 = 140
Therefore, 60ºC is equal to 140ºF.
Question 7 Report
The dimension of young's modulus,E is given by
Answer Details
Young's modulus, denoted by E, is a measure of the stiffness of a solid material. It is defined as the ratio of stress to strain in a material that is behaving elastically. Stress is the force applied per unit area, and strain is the deformation experienced by the material in response to the applied stress.
Let's break down the dimensions for Young's modulus:
Stress: Stress is defined as force per unit area. Thus, the dimension of stress can be expressed as:
Stress = Force / Area
The dimension of force is given by mass × acceleration, i.e., Force = MLT-2 (where M is mass, L is length, and T is time).
The dimension of area is length × length = L2.
Therefore, the dimension of stress is:
Stress = (MLT-2) / (L2) = ML-1T-2
Strain: Strain is the ratio of the change in length to the original length and is dimensionless because it is a ratio of two lengths.
Thus, the dimension of strain is simply 1 (dimensionless).
Since Young's modulus is the ratio of stress to strain, its dimension is the same as that of stress. Therefore, the dimension of Young’s modulus E is:
ML-1T-2
Question 8 Report
The acceleration of a free fall due to gravity is not a constant everywhere on the Earth's surface because
Answer Details
The elliptical shape of the Earth: The Earth is not a perfect sphere; it is slightly flattened at the poles and bulging at the equator. This shape causes variations in gravitational acceleration.
Question 9 Report
What is the least possible error encountered when taking measurement with a metre rule?
Answer Details
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Question 10 Report
A load of 300N is to be lifted by a machine with a velocity ratio of 2 and an efficiency of 60%. What effort will be applied to lift the load?
Answer Details
To determine the effort needed to lift a load using a machine, we first need to understand some key concepts: **Load**, **Effort**, **Velocity Ratio** (VR), and **Efficiency**.
1. **Load** is the force or weight that needs to be lifted by the machine. In this case, the load is 300N.
2. **Velocity Ratio (VR)** is the ratio of the distance moved by the effort to the distance moved by the load. Given here as 2.
3. **Efficiency** of a machine is expressed as a percentage and is the ratio of the useful work output to the input work done by the effort. Here, the efficiency is 60% or 0.60 as a decimal.
The formula to calculate the **Effort** is derived from the relationship between these factors:
\[ \text{Efficiency} = \frac{\text{Mechanical Advantage (MA)}}{\text{Velocity Ratio (VR)}} \]
Where:
\[ \text{Mechanical Advantage (MA)} = \frac{\text{Load}}{\text{Effort}} \]
From the above, we have:
\[ \text{MA} = \text{VR} \times \text{Efficiency} \]
Replacing with the given values:
\[ MA = 2 \times 0.60 = 1.2 \]
Now, calculate the **Effort** using the relation:
\[ \text{Effort} = \frac{\text{Load}}{\text{MA}} \]
\[ \text{Effort} = \frac{300N}{1.2} = 250N \]
Therefore, the **Effort** needed to lift the load is 250N.
Question 11 Report
Which of the following structures enables the exchange of gases in insects?
Answer Details
In insects, the structure responsible for the exchange of gases is the tracheae. Insects have a unique respiratory system where air is taken in through tiny openings called spiracles located on the surface of their body.
The air then travels directly into a network of tubes known as the tracheae. The tracheae branch out extensively throughout the insect's body, allowing oxygen to diffuse directly to the insect's tissues and cells. The carbon dioxide produced in the cells travels back through the tracheae and exits the body through the spiracles.
Other structures like the skin, Malpighian tubules, and flame cells have different functions:
Thus, the correct answer is the tracheae as they specifically enable the exchange of gases in insects.
Question 12 Report
I clear II sharp III poor IV dark
Which of the above happens when the hole of a pinhole camera is diminished?
Answer Details
A pinhole camera is a simple camera device that uses a tiny hole to project an inverted image of the scene in front of it onto a surface at the back of the camera. When you diminish the hole of a pinhole camera, meaning you make the hole smaller, a few effects occur on the resulting image. Here’s what happens:
Therefore, reducing the size of the pinhole in a pinhole camera results in the image becoming both darker and sharper.
Answer: II only (The image becomes sharper.)
Question 13 Report
The quantity of heat required to melt ice of 0.2 kg whose specific latent heat is 3.4 x 105 J/Kg is
Answer Details
To determine the quantity of heat required to melt ice, we use the formula for latent heat:
Q = m × L,
where:
For this problem, we have:
Now, substitute these values into the formula:
Q = 0.2 kg × 3.4 × 105 J/kg
Calculate the product:
Q = 0.68 × 105 J
To express this in standard scientific notation, it can be rewritten as:
Q = 6.8 × 104 J
Thus, the quantity of heat required to melt 0.2 kg of ice is 6.8 × 104 J.
Question 14 Report
Answer Details
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Question 15 Report
The capacitance of a capacitor, C, is inversely proportional to
Answer Details
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Question 16 Report
Infra-red thermometers work by detecting the
Answer Details
Infra-red thermometers work by detecting the radiation from the body and converting it to temperature. These thermometers are designed to measure the infrared radiation, also known as heat radiation, emitted by objects. All objects with a temperature above absolute zero emit infrared radiation. The thermometer's sensor captures this radiation and converts it into an electrical signal that can be read as a temperature measurement. This method allows for quick, non-contact temperature readings, which is why infrared thermometers are often used in medical settings, industrial applications, and more.
Question 17 Report
Electrolysis can be investigated using
Answer Details
When investigating electrolysis, the most relevant instrument from the list provided is the Voltameter. This is because the voltameter is specifically designed to measure the amount of substance that is deposited or consumed at electrodes during the electrolysis of an electrolyte. It functions based on the chemical change associated with the electric current passing through the electrolyte.
Here is a simple explanation of how electrolysis works and why a voltameter is useful:
Electrolysis is the process of using electricity to cause a chemical reaction, which is usually a decomposition reaction. This involves passing an electric current through an electrolyte (a substance containing free ions). These ions migrate towards electrodes, resulting in chemical changes. The key aspect to measure during electrolysis is the amount of material (e.g., metal or gas) that is deposited at the electrodes.
The Voltameter helps in understanding electrolysis because:
Voltmeter, Ammeter, and Galvanometer are not used primarily for investigating electrolysis:
Question 18 Report
According to kinetic theory of gases, the pressure exerted by the gas on the wall is equal
Answer Details
According to the kinetic theory of gases, the pressure exerted by a gas on the walls of its container relates to the behavior and movement of its molecules. To understand how this pressure forms, let's explore the following essential concepts.
Molecules in a gas move rapidly and randomly in all directions. When these molecules collide with the walls of their container, they exert force due to the change in momentum during these collisions. The frequency and force of these collisions contribute directly to the pressure experienced by the container walls.
The **pressure** exerted by the gas can be described in terms of the rate of change of momentum imparted by the walls per second per unit area. This means that pressure is determined by considering how fast and how much the momentum of the gas molecules changes when they bounce off the container's walls, spread over a specific area and over time. In simpler terms, the faster and more frequently molecules hit the walls, and the higher their change in momentum, the greater the pressure is.
This explanation can be directly associated with the statement: "rate of change of momentum imparted by the walls per second per unit area", which accurately describes the concept of pressure in the context of the kinetic theory of gases.
Question 19 Report
In voltage measurement, the potentiometer is preferred to voltmeter because it
Answer Details
In voltage measurement, a **potentiometer is preferred to a voltmeter** primarily because it **consumes negligible current**. Let me explain this in simpler terms:
A **voltmeter** is an instrument used to measure the potential difference (voltage) across two points in an electrical circuit. However, when a voltmeter is connected, it draws a small amount of current from the circuit to make the measurement, which can slightly alter the voltage being measured. This is particularly an issue in high-resistance circuits where even a small current draw can significantly affect the measurement.
On the other hand, a **potentiometer** is a device designed to measure voltage by comparing it with a known reference voltage without drawing current from the circuit under test. It comes into balance at a point where no current flows through it, ensuring that the measurement is not influenced by the potentiometer itself. This makes it a non-invasive method of measuring voltage, which is particularly useful for precise measurements in sensitive circuits.
Here’s a brief explanation about why the other options listed are less relevant:
Therefore, the key advantage of the potentiometer is its **ability to measure voltage without altering the circuit**, which stems from its negligible current consumption. This **ensures more accurate and reliable measurements** in many applications.
Question 20 Report
Use the diagram above to answer the question that follows
The zone labelled II is called
Answer Details
The zone labelled II is called the littoral zone.
To explain: The littoral zone is a part of a body of water that is close to the shore. It is typically characterized by abundant sunlight and nutrient availability, making it a highly productive area for aquatic plants and animals. This zone supports various forms of life such as algae, small fish, and invertebrates. The key feature of the littoral zone is its proximity to the shoreline, where sunlight can penetrate to the bottom, allowing for photosynthesis to occur.
Question 21 Report
The total number of ATP produced during glycolysis is
Answer Details
During the process of glycolysis, a single glucose molecule is broken down into two molecules of pyruvate. During this metabolic pathway, there is a net gain of adenosine triphosphate (ATP) molecules. To understand how many ATP molecules are produced, let's break it down step by step.
1. **Initial ATP Investment:** Glycolysis initially requires an investment of 2 ATP molecules to phosphorylate glucose and convert it into a more reactive form during the early stages of the glycolytic pathway.
2. **ATP Production:** As glycolysis progresses, a total of 4 ATP molecules are produced. This occurs in the later steps of the pathway where adenosine diphosphate (ADP) is phosphorylated to form ATP. This is known as substrate-level phosphorylation.
3. **Net ATP Gain:** To find out the net gain of ATP through glycolysis, simply subtract the initial ATP investment from the total ATP produced:
Net ATP = Total ATP produced - Initial ATP investment
Net ATP = 4 ATP - 2 ATP
Net ATP = 2 ATP
Thus, the net total number of ATP produced during glycolysis is 2 molecules.
Question 22 Report
The mechanical advantage of the machine shown above
Answer Details
Mechanical advantage of a machine = LOADEFFORT
In this case of a wedge, we can consider the dimensions given:
Load distance (height of the machine): 15 cm
Effort distance (movement of the effort): 0.5 cm
M.A = 150.5 = 30.0
Question 23 Report
Two tuning forks of frequencies 6Hz and 4Hz respectively are sounded together. The beat frequency is
Answer Details
When two sound waves of slightly different frequencies are sounded together, they interfere with each other in such a way that the intensity of the sound alternates between loud and soft. This phenomenon is known as "beats". The number of beats heard per second is called the "beat frequency".
The beat frequency can be calculated by subtracting the frequency of one wave from the frequency of the other. Mathematically, it is represented as:
Beat Frequency (fbeat) = | f1 - f2 |
Where:
In this case:
Using the formula:
fbeat = | 6Hz - 4Hz | = | 2Hz | = 2Hz
Therefore, the beat frequency is 2Hz. This means that you would hear 2 beats per second when the tuning forks of frequencies 6Hz and 4Hz are sounded together.
Question 24 Report
Which of the following is the best as shaving mirror?
Answer Details
When selecting the best type of mirror for shaving, the key consideration is how the mirror reflects light and creates an image. For the purpose of shaving, it is important to have a mirror that magnifies the face and provides a clear view.
The best option for a shaving mirror is a concave mirror. Here is why:
Other types of mirrors, like convex and plane mirrors, and parabolic mirrors, do not provide the same level of magnification or focused reflecting properties, making them less suitable for shaving purposes.
Question 25 Report
What is the inductance reactance of a coil of 7H when connected to a 50Hz a.c circuit?
Answer Details
To determine the inductive reactance of a coil, we use the formula:
Inductive Reactance (XL) = 2πfL
Where:
Given:
Substituting the given values into the formula:
XL = 2 × π × 50 × 7
Calculating this:
XL = 2 × 3.14159 × 50 × 7
XL ≈ 2 × 3.14159 × 350
XL ≈ 2 × 1099.557
XL ≈ 2199.114
Therefore, the inductive reactance of the coil is approximately 2200Ω.
Question 26 Report
A boy standing 408m from a wall blew a trumpet and heard the echo 2.4s later. Calculate the speed of the sound
Answer Details
To calculate the speed of sound, we need to understand that an echo involves a sound wave traveling to a surface and back. In this case, the sound travels from the boy to the wall and then returns.
The total distance that the sound wave travels is twice the distance from the boy to the wall because it goes to the wall and back. Therefore, the total distance is:
Total Distance = 2 x 408m = 816m
The echo was heard 2.4 seconds after the sound was made. The speed of sound can be calculated using the formula:
Speed of Sound = Total Distance / Time
Plugging in the values, we have:
Speed of Sound = 816m / 2.4s
When you perform the division, you find:
Speed of Sound = 340 m/s
Thus, the speed of the sound is 340 m/s, which is the correct answer.
Question 27 Report
The stress experienced by a wire of diameter
Answer Details
Stress is defined as the force applied per unit area. In the context of a wire being loaded by a weight, the weight acts as the force exerted, and the cross-sectional area of the wire is the area over which this force is distributed.
Force (F): This is given by the weight, which is y2 N.
Cross-sectional Area (A): For a wire with a diameter, the area can be calculated using the formula for the area of a circle: A = πr2, where r is the radius of the wire.
Given the diameter of the wire as yπ meters, the radius (r) is half of the diameter:
r = (yπ)/2
So, the area (A) is:
A = π[(yπ)/2]2
Simplifying the area:
A = π(y2π2/4)
A = y2π3/4
Stress (σ) is given by the formula:
σ = F/A
Substituting the given weight (force) and the calculated area:
σ = (y2) / (y2π3/4)
By simplifying the expression:
σ = (4y2) / (y2π3)
Cancel out y2 from numerator and denominator:
σ = 4/π2 Nm−2
Thus, the correct stress experienced by the wire is 4π Nm−2, as provided in one of the options. The explanation shows clearly how the force and area are used to derive the stress experienced by the wire.
Question 28 Report
In a cross involving a heterozygous red flower plant (Rr) and a white flowered plant (rr). What is the probability that the offspring will be Rr?
Answer Details
By crossing Rr x rr
We obtain Rr , rr , rr , Rr
⇒ 50% = 12
Question 29 Report
A solid cube of aluminum is 1.5cm on each edge. The density of aluminum is 2700kgm−1 . Find the mass of the cube.
Answer Details
The mass of an object can be calculated using the formula:
Mass = Density × Volume
In this case, we need to find the mass of a solid cube of aluminum. Given:
First, we need to calculate the volume of the cube. The volume V of a cube with edge length a is given by:
V = a3
Substitute the edge length:
V = (1.5 cm)3 = 1.5 × 1.5 × 1.5 cm3 = 3.375 cm3
Since the density is given in kg/m3, we should convert the volume from cm3 to m3. There are 1,000,000 cm3 in 1 m3, so:
Volume in m3 = 3.375 cm3 × (1 m3/1,000,000 cm3) = 3.375 × 10-6 m3
Now, use the mass formula:
Mass = Density × Volume
Mass = 2700 kg/m3 × 3.375 × 10-6 m3
This equals:
Mass = 9.1125 × 10-3 kg
Convert kg to grams (since 1 kg = 1000 g):
Mass = 9.1125 grams
So, the mass of the cube is approximately 9.1 g. Thus, the correct answer is 9.1 g.
Question 30 Report
The device for measuring the angle of dip is
Answer Details
The device used for measuring the angle of dip is the dip circle.
Let me explain this in simple terms:
The angle of dip, also known as the magnetic inclination, is the angle made by the Earth's magnetic field lines with the horizontal plane. It varies depending on where you are on the Earth's surface. In some places, magnetic field lines are nearly vertical, while in others they are more horizontal.
A dip circle is a specialized scientific instrument used to measure this angle. It usually consists of a magnetic needle that is free to rotate in the vertical plane.
When using a dip circle, you align it so that its plane is parallel to the direction of the Earth's magnetic field. Then, you read the angle at which the magnetic needle stabilizes. This is the angle of dip. The instrument's mechanism allows for accurate measurement of this angle by compensating for any external influences or inclinations.
Question 31 Report
Rainbow is formed when sunlight undergoes
Answer Details
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Question 32 Report
The changes of living organisms over generation is referred to as
Answer Details
The changes of living organisms over generations are referred to as organic evolution.
Organic evolution, also known as biological evolution, is the process through which species of organisms undergo changes over time due to genetic variations and environmental factors. This leads to the development of new traits and, over long periods, may result in the emergence of new species.
Here's a simple breakdown of the concept:
This process is a key concept in biology and is fundamental to understanding the diversity of life on Earth. Organic evolution is distinct from other kinds of evolution mentioned, as it specifically deals with biological organisms.
Question 33 Report
The formation of cilia and flagella in living cells is carried out with the help of
Answer Details
The formation of cilia and flagella in living cells is primarily carried out with the help of **centrioles**.
Here's a simple explanation:
Centrioles are cylindrical structures made up of microtubules. They are found in eukaryotic cells and play a critical role in cell division and the organization of the cell's cytoskeleton. However, their role extends beyond this to the formation of the basal bodies which seed the growth of cilia and flagella.
Cilia and flagella are microscopic, hair-like structures that protrude from the surface of certain eukaryotic cells. They are primarily involved in movement. Cilia often work like tiny oars, moving fluid across the cell's surface or propelling single-celled organisms. Flagella are typically longer and move in a whip-like fashion to propel cells, such as sperm cells.
Here's how centrioles contribute to the formation of these structures:
1. **Basal Body Formation**: Each cilium or flagellum grows out from a structure known as a basal body. The basal body is derived from the centrioles. During this process, a centriole migrates to the cell's surface and acts as a nucleation site for the growth of microtubules, which in turn form the structural core of cilia and flagella.
2. **Microtubule Organization**: The centrioles help organize microtubules in a "9+2" arrangement, which is characteristic of cilia and flagella. This refers to nine pairs of microtubules forming a ring around two central microtubules, giving these structures both stability and flexibility for movement.
Thus, centrioles are crucial as they provide the groundwork for the formation and proper functioning of cilia and flagella. They ensure that these structures are assembled correctly and are able to carry out their roles in cell movement and fluid transport.
Question 34 Report
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Answer Details
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Question 35 Report
At absolute zero temperature, the average velocity of the molecules
Answer Details
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Question 36 Report
Inbreeding is highly discouraged in humans because it may
Answer Details
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Question 37 Report
The simple form of the lead acid accumulator often has a negative pole of
Answer Details
The simple form of the lead acid accumulator often has a negative pole of lead plate. In a lead-acid battery, the key components include two electrodes and an electrolyte. The **negative pole**, also known as the cathode during discharge, is typically made of **lead (Pb)**, which is in the form of a **lead plate**. When the battery is in use or discharging, this lead reacts with sulphuric acid (the electrolyte) to create lead sulfate.
To break it down further:
Thus, by analyzing the composition and reactions within a lead-acid battery, it is clear that the **negative pole** is made from a **lead plate**.
Question 38 Report
The velocity ratio of an inclined plane at 60º to the horizontal is
Answer Details
The concept of an inclined plane is all about simplifying the forces involved in moving or holding a load. The **velocity ratio (VR)** for an inclined plane is defined as the ratio of the distance moved by the effort to the distance moved by the load. This can also be expressed in terms of the lengths involved in the triangle made by the inclined plane.
For an inclined plane placed at an angle **θ** to the horizontal, the velocity ratio is given by the formula:
VR = 1/sin(θ)
Given that the inclined plane is at an angle of **60º**:
First, find the sine of 60º:
sin(60º) = √3/2 (approximately 0.866)
Now, substitute this value into the formula for VR:
VR = 1/sin(60º) ≈ 1/0.866 ≈ 1.155
The **velocity ratio** for an inclined plane at **60º** to the horizontal is **approximately 1.155**.
Question 39 Report
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called
Answer Details
The tangential force acting on an object that opposes it from sliding freely on the adjacent surface is called the friction force.
Let me explain each of the options to clarify why friction force is the correct answer:
In summary, friction force is the force that acts to oppose sliding between surfaces in contact and acts tangentially, making it the correct answer.
Question 40 Report
5 X 10−3 kg of liquid at its boiling point is evaporated in 20s by the heat generated by a resistor of 2Ω when a current of 10A is used. The specific latent heat of vaporization of the liquid is
Answer Details
To solve this problem, we need to calculate the specific latent heat of vaporization of the liquid. The specific latent heat of vaporization, denoted as \(L\), is defined as the amount of heat required to convert 1 kilogram of a liquid into a gas at constant temperature and pressure. The formula for specific latent heat of vaporization is given by:
L = \(\frac{Q}{m}\)
Where:
First, we need to calculate the total heat energy \(Q\) generated by the resistor. The heat produced by an electrical resistor can be calculated using the formula:
Q = I^2Rt
Where:
Given:
Substituting these values into the formula for Q:
Q = (10^2) * 2 * 20 = 100 * 2 * 20 = 4000 J
Now that we have the total heat energy supplied, let's calculate the specific latent heat of vaporization:
Given that the mass \(m\) of the liquid evaporated is \(5 \times 10^{-3}\) kg, we can substitute the values into the formula for \(L\):
L = \(\frac{4000}{5 \times 10^{-3}} = \frac{4000}{0.005} = 800,000 J/kg\)
Therefore, the specific latent heat of vaporization of the liquid is 8.0 x 105 J/kg.
Would you like to proceed with this action?