Wird geladen....
Drücken und Halten zum Ziehen |
|||
Hier klicken, um zu schließen |
Frage 1 Bericht
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Antwortdetails
v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
v | = | 2 × 4x | = | 8 | ms |
Frage 2 Bericht
When the downward current flows in a straight vertical conductor, the direction of its magnetic field at a point due north of the wire is
Antwortdetails
At a point due N of the wire, the field is due east, at a point due S of the wire, the field is due west.
Frage 3 Bericht
Which of the following statement about the electromagnet shown above is correct?
Antwortdetails
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Frage 4 Bericht
Aluminium is sometimes used as the leaf of an electroscope because it
Antwortdetails
- Aluminium can be made in thin sheet like Gold.
- the leaf is a thin material that can be diverged easily.
Frage 5 Bericht
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Antwortdetails
Depth of sea can be measured by echo, a reflected sound waves.
Frage 6 Bericht
The resultant capacitance in the figure above is
Antwortdetails
For the parallel arrangement = 2 + 4 = 6μf
For | the | series | arrangement | = | 1CT | = | 12 | + | 13 | + | 16 | + | 14 |
1CT | = | 1512 |
CT | = | 1215 | = | 0.8μf |
Frage 7 Bericht
The mass of a nucleus is the
Antwortdetails
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Frage 8 Bericht
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Antwortdetails
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Frage 9 Bericht
The earth's gravitational field intensity at its surface is about
(G = 6.7 × 10−11 Nm2 /kg2 , mass of the earth is 6 × 1024 kg, radius of the earth is 6.4 × 106 m, g on the earth = 9.8m/s2 )
Antwortdetails
The earth's gravitational field intensity at its surface can be calculated using the formula: g = G * M / r^2 where G is the gravitational constant, M is the mass of the earth, r is the radius of the earth, and g is the gravitational field intensity at the surface of the earth. Substituting the given values, we get: g = (6.7 × 10^-11 Nm^2/kg^2) * (6 × 10^24 kg) / (6.4 × 10^6 m)^2 g = 9.8 N/kg (approx.) Therefore, the answer is 9.8N/kg.
Frage 10 Bericht
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Antwortdetails
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be rectilinear. When an object moves with constant speed, it means that it covers the same distance in equal time intervals. On the other hand, acceleration is the rate of change of velocity with time. If an object undergoes acceleration, its velocity changes with time. Therefore, if a body moves with constant speed and undergoes an acceleration, it means that its direction of motion changes while it covers equal distances in equal time intervals. This type of motion is called rectilinear motion, where the object moves in a straight line, but its velocity changes due to the acceleration. In contrast, circular motion is when an object moves in a circular path with a constant speed, while oscillatory motion is when an object moves back and forth around a fixed point. Rotational motion is when an object rotates around an axis. None of these descriptions fit the scenario of a body moving with constant speed and undergoing acceleration, so the answer is rectilinear motion.
Frage 11 Bericht
Electrons were discovered by
Antwortdetails
Electrons were discovered by J.J. Thompson. In the late 19th century, he performed a series of experiments using cathode ray tubes, which are glass tubes containing low-pressure gas and electrodes. By applying high voltage, he observed a beam of negatively charged particles traveling from the negative electrode to the positive electrode. He concluded that these particles, which he called "corpuscles," were fundamental units of negative charge and later were renamed electrons. This discovery led to the development of the modern understanding of atomic structure and the electron's role in it.
Frage 12 Bericht
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Antwortdetails
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
h | = | 200.8 | = | 25cm |
Frage 13 Bericht
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Antwortdetails
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Frage 14 Bericht
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Antwortdetails
P = 0.2cm, L = r = 23cm
VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Frage 15 Bericht
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Antwortdetails
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Frage 16 Bericht
A straight wire 15cm long, carrying a current of 6.0A is in a uniform field of 0.40T. What is the force on the wire when it is at right angle to the field
Antwortdetails
The force on a current-carrying wire in a uniform magnetic field can be calculated using the equation: F = BILsinθ where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, L is the length of the wire in meters, and θ is the angle between the wire and the magnetic field. In this problem, the wire is 15cm long (0.15m), carrying a current of 6.0A, and the magnetic field is 0.40T. The angle between the wire and the magnetic field is 90 degrees (since the wire is at right angles to the field). Substituting the given values into the equation, we get: F = (0.40T)(6.0A)(0.15m)sin90 sin90 = 1, so we can simplify the equation to: F = (0.40T)(6.0A)(0.15m) F = 0.36N Therefore, the force on the wire is 0.36N. Answer option C is the correct answer.
Frage 17 Bericht
A train has an initial velocity of 44m/s and an acceleration of -4m/s2 . Calculate its velocity after 10 seconds
Antwortdetails
The velocity of the train after 10 seconds can be calculated using the formula: v = u + at where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time. Substituting the given values, we get: v = 44 m/s + (-4 m/s^2) x 10 s v = 44 m/s - 40 m/s v = 4 m/s Therefore, the velocity of the train after 10 seconds is 4m/s. Answer option D is correct. Explanation: The train has an initial velocity of 44 m/s and an acceleration of -4 m/s^2. The negative sign indicates that the acceleration is in the opposite direction to the initial velocity, which means that the train is slowing down. After 10 seconds, the train's velocity decreases by 40 m/s (4 m/s^2 x 10 s) to reach a final velocity of 4 m/s.
Frage 18 Bericht
In the molecular explanation, heat is transferred by the
Antwortdetails
- Conduction is explained in terms of the free electrons
- Convection is explained in terms of the movement of the fluid involved
- Radiation is explained in terms of invisible electromagnetic waves.
Frage 19 Bericht
In semi-conductor, the carriers of current at room temperature are
Antwortdetails
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Frage 20 Bericht
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Antwortdetails
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Frage 21 Bericht
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Antwortdetails
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Frage 22 Bericht
A safety precaution designed to prolong the life of a lead acid accumulator is
Antwortdetails
- Topping is done with distilled water
- Naked flame should be avoided when charging the battery
- Direct connection of wires to the terminals should be avoided.
Frage 23 Bericht
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Antwortdetails
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Frage 24 Bericht
When blue and green colours of light are mixed, the resultant colour is
Frage 25 Bericht
When the temperature of a liquid is increased, its surface tension
Antwortdetails
Surface tension or elasticity of a fluid decreases with increased in temperature
Frage 26 Bericht
Which of the following equations is the correct definition of the reactance of an indicator L?
Antwortdetails
The correct definition of the reactance of an inductor L is: Reactance = (Amplitude of voltage) ÷ (Amplitude of current) The reactance of an inductor is a measure of the opposition offered by the inductor to the flow of alternating current (AC). It is denoted by the symbol Xl and is measured in ohms. When AC flows through an inductor, a magnetic field is generated around the inductor, which opposes any changes in the current flowing through it. This opposition to the flow of current is called reactance. The reactance of an inductor depends on its inductance, frequency of the AC signal, and the amplitude of the AC signal. However, the reactance of an inductor is directly proportional to the frequency of the AC signal and the inductance of the inductor. The reactance of an inductor is also affected by the amplitude of the AC signal, but this effect is not as significant as the other two factors. is the correct definition of the reactance of an inductor, as it expresses the ratio of the amplitude of voltage to the amplitude of current, which is a common way to define reactance. is incorrect, as it represents the power delivered by the AC signal, not the reactance. and are also incorrect, as they involve squaring either the amplitude of current or the amplitude of voltage, which is not a valid method of calculating reactance. Therefore, the correct option is.
Frage 27 Bericht
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Antwortdetails
n = 200, S = 132 rev/min, v = 350m/s2
f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
λ | = | vf | = | 350440 | = | 0.875m |
Frage 28 Bericht
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Antwortdetails
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Frage 29 Bericht
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Antwortdetails
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Frage 30 Bericht
A thermocouple thermometer is connected to a millivoltmeter which can read up to 10mV. When one junction is in ice at 0°C and the other is steam at 100°C, the millivoltmeter reads 4mV. What is the maximum temperature which this arrangement can measure
Antwortdetails
The maximum temperature which this arrangement can measure is 250°C. A thermocouple thermometer works by using the thermoelectric effect, which is the phenomenon that occurs when two dissimilar metals are joined together to form a loop and a temperature difference is established between the two junctions. This temperature difference generates a small electrical voltage, which can be measured using a millivoltmeter. The voltage generated is proportional to the temperature difference between the two junctions. In the case of the thermocouple thermometer described, one junction is in ice at 0°C and the other is steam at 100°C, and the millivoltmeter reads 4mV. This means that the voltage generated by the thermocouple is 4 millivolts, which corresponds to a temperature difference of 100°C. However, the millivoltmeter can only read up to 10mV, so the maximum temperature difference it can measure is 10mV / 4mV/°C = 250°C. This means that the maximum temperature which this arrangement can measure is 250°C.
Frage 31 Bericht
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Antwortdetails
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Frage 32 Bericht
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Antwortdetails
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Frage 33 Bericht
Gases conduct electricity under
Antwortdetails
Gases conduct electricity under low pressure and high voltage
Frage 34 Bericht
One newton × One meter equals?
Antwortdetails
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Frage 35 Bericht
The lead-acid accumulator consists of
Antwortdetails
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Frage 36 Bericht
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Antwortdetails
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Frage 37 Bericht
A mixture of blue and red pigment when illuminated by white light will appear
Antwortdetails
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Frage 38 Bericht
A man on a bench will exert the greatest pressure on the bench when he
Antwortdetails
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Frage 39 Bericht
Lamps in domestic lightings are usually in
Antwortdetails
Lamps in domestic lighting are usually connected in parallel. This means that each lamp is connected directly to the power supply, rather than being connected in a series or divergent or convergent configuration. In a parallel configuration, each lamp operates independently of the others, and if one lamp fails, the other lamps will continue to function. This is an important feature for domestic lighting, as it ensures that a single lamp failure will not leave the entire room in darkness. Additionally, in a parallel configuration, each lamp can be controlled independently, for example by a switch or dimmer, without affecting the operation of the other lamps. This allows for greater flexibility in lighting design and control. In summary, lamps in domestic lighting are usually connected in parallel because it allows for independent operation of each lamp and ensures that a single lamp failure does not affect the operation of the others.
Frage 40 Bericht
Radio waves belongs to the class of ware whose velocity is about
Antwortdetails
Radio waves belong to the class of waves whose velocity is approximately 3 x 10^8 m/s. This velocity is commonly denoted as the speed of light, which is the speed at which all electromagnetic waves, including radio waves, travel in a vacuum. This constant velocity is one of the fundamental principles of physics and is important in understanding the behavior and properties of light and other electromagnetic waves. The speed of light is incredibly fast, and it's difficult for us to imagine just how fast it is. To put it into perspective, light can travel around the Earth's equator almost 7.5 times in just one second. This high speed is essential for radio communication, as it enables radio waves to travel long distances in a short amount of time, allowing us to communicate with people and devices far away from us.
Möchten Sie mit dieser Aktion fortfahren?