Wird geladen....
Drücken und Halten zum Ziehen |
|||
Hier klicken, um zu schließen |
Frage 1 Bericht
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Antwortdetails
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Frage 2 Bericht
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Antwortdetails
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Frage 3 Bericht
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Antwortdetails
CT | = | C1 × C2 C1 + C2 |
= | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Frage 4 Bericht
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Antwortdetails
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Frage 5 Bericht
A rectangular solid black has length 10cm, breadth 5cm and height 2cm. If it lies on a horizontal surface, and has density 100kg/m3 , calculate the pressure it exerts on the surface.
Antwortdetails
To calculate the pressure that the rectangular solid exerts on the surface, we need to use the formula for pressure: Pressure = Force / Area In this case, the force is the weight of the rectangular solid, which we can calculate using the formula: Weight = Mass x Gravity The mass of the rectangular solid can be calculated using its density and volume: Mass = Density x Volume The volume of the rectangular solid is simply its length x breadth x height: Volume = Length x Breadth x Height = 10 cm x 5 cm x 2 cm = 100 cm3 We need to convert this volume to cubic meters to use the density given in kg/m3: Volume = 100 cm3 = 0.0001 m3 Now we can calculate the mass: Mass = Density x Volume = 100 kg/m3 x 0.0001 m3 = 0.01 kg The gravity is the acceleration due to gravity, which we can assume to be 9.81 m/s2. Therefore, the weight is: Weight = Mass x Gravity = 0.01 kg x 9.81 m/s2 = 0.0981 N Now we can use this weight to calculate the pressure on the surface. The surface area in contact with the rectangular solid is simply its length x breadth: Area = Length x Breadth = 10 cm x 5 cm = 50 cm2 We need to convert this area to square meters: Area = 50 cm2 = 0.005 m2 Therefore, the pressure is: Pressure = Force / Area = 0.0981 N / 0.005 m2 = 19.62 N/m2 We can convert this to units of N/cm2 or N/mm2 if desired. This is equivalent to: Pressure = 0.1962 N/cm2 = 0.0001962 N/mm2 So the pressure that the rectangular solid exerts on the surface is 19.62 N/m2, which is approximately 20 N/m2. Therefore, the answer is 200 N/m2.
Frage 6 Bericht
The mass of water vapour in a given volume of air is 0.05g at 20°C, while the mass of water vapour required to saturate it at the same temperature is 0.15g. Calculate the relative humidity of the air.
Antwortdetails
Relative humidity is a measure of how much water vapor the air is holding compared to the maximum amount it could hold at a given temperature. It is expressed as a percentage. To calculate the relative humidity of the air in this problem, we need to use the formula: Relative humidity = (mass of water vapor in air / mass of water vapor required for saturation) x 100% We are given that the mass of water vapor in the air is 0.05g and the mass of water vapor required for saturation at the same temperature is 0.15g. Plugging these values into the formula, we get: Relative humidity = (0.05 / 0.15) x 100% = 33.33% Therefore, the relative humidity of the air is 33.33%. So the answer is 33.33%.
Frage 7 Bericht
A man on a bench will exert the greatest pressure on the bench when he
Antwortdetails
The man on the bench will exert the greatest pressure when he stands on the toes of one foot. This is because when he stands on one foot, all his weight is concentrated on a smaller surface area of the bench, resulting in more pressure. The pressure he exerts is calculated by dividing his weight by the surface area in contact with the bench. When he stands on one foot, the surface area is smaller, which means the pressure exerted is greater. In comparison, when he lies flat on his back or belly, or when he stands on both feet, his weight is distributed over a larger surface area, resulting in less pressure.
Frage 8 Bericht
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Antwortdetails
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Frage 9 Bericht
In which of the points labelled A, B, C, D and E on the conductor shown would electric charge tend to concentrate most
Antwortdetails
- Charge are mostly concentrated at the outermost part of a hollow conductor
- Charge are also mostly concentrated at the pointed ends or places with high density point.
Frage 10 Bericht
The limiting frictional force between two surface depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surface
Antwortdetails
The correct answer is "I and IV only". The limiting frictional force between two surfaces depends on the normal reaction between the surfaces (I) and the nature of the surface (IV). The normal reaction is the force that the surfaces exert on each other perpendicular to the plane of contact. The greater the normal reaction, the greater the frictional force that can be applied before motion occurs. The nature of the surface is determined by factors such as roughness, hardness, and texture, which can affect the frictional force. The area of surface in contact (II) does not directly affect the limiting frictional force, although it can affect the force required to initiate motion. For example, if the area of contact is small, the pressure between the surfaces will be higher, making it harder to initiate motion. The relative velocity between the surfaces (III) also does not directly affect the limiting frictional force, although it can affect the force required to maintain motion. If the surfaces are already in motion, a lower force may be required to keep them moving than to initiate motion. In summary, the limiting frictional force between two surfaces depends primarily on the normal reaction and the nature of the surface, and is not directly affected by the area of contact or the relative velocity between the surfaces.
Frage 11 Bericht
Neutrons were discovered by
Antwortdetails
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Frage 12 Bericht
The pin-hole camera produces a less sharply defined image when the
Antwortdetails
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Frage 13 Bericht
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Antwortdetails
R = th = 2cm, d = 0.67cm
n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Frage 14 Bericht
When water is boiling, it
Antwortdetails
When water is boiling, it changes from a liquid state to a gaseous state called steam. This happens when the water is heated to its boiling point, which is when it reaches a temperature of 100 degrees Celsius (212 degrees Fahrenheit) at sea level. As the water is heated, it absorbs energy and the molecules start to move faster and faster, eventually reaching a point where they escape into the air as steam. The temperature of the water during boiling does not change, as all the energy is being used to break the bonds between the water molecules rather than increasing the temperature. Therefore, the options "gets hotter," "increase in mass," and "decreases in mass" are not correct when describing what happens when water is boiling.
Frage 15 Bericht
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Antwortdetails
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Frage 16 Bericht
A boy pushes a 500kg box along a floor with a force of 2000N. If the velocity of the box is uniform, the co-efficient of friction between the box and the floor is
Antwortdetails
The coefficient of friction is a measure of the amount of friction between two surfaces. It is represented by the symbol "μ" and is a dimensionless quantity. The coefficient of friction between two surfaces depends on the nature of the surfaces in contact and the force pressing them together. In this problem, the boy is pushing the box with a force of 2000N. If the box is moving with a uniform velocity, then the force of friction acting on the box is equal and opposite to the pushing force applied by the boy. We can calculate the force of friction using the formula: frictional force = coefficient of friction x normal force where the normal force is the force exerted by the floor on the box in a direction perpendicular to the floor. Since the box is not moving up or down, the normal force is equal to the weight of the box. The weight of the box can be calculated using the formula: weight = mass x gravity where mass is the mass of the box and gravity is the acceleration due to gravity (9.8 m/s^2). So, the weight of the box is: weight = 500 kg x 9.8 m/s^2 = 4900 N The force of friction is equal to the pushing force of 2000N, so we can set these two equal to each other and solve for the coefficient of friction: frictional force = 2000N coefficient of friction x normal force = 2000N coefficient of friction x 4900N = 2000N coefficient of friction = 2000N / 4900N = 0.408 So, the coefficient of friction between the box and the floor is approximately 0.4. Therefore, the correct answer is 0.4.
Frage 17 Bericht
Which of the following statements are correct of the production and propagation of waves?
I. vibration produces waves
II. waves transmit energy along the medium
III. the medium through which the wave travels does not travel with the wave
IV. waves do not require any medium for transmission
Antwortdetails
The correct statement is: I and II and III only. Explanation: - Statement I is correct because the production of waves involves some kind of disturbance that creates a vibration in the medium, which then propagates as a wave. - Statement II is correct because waves carry energy along the medium as they propagate. This is why waves can be used to transmit information or power over long distances. - Statement III is correct because the medium through which a wave travels does not move with the wave. Instead, the wave passes through the medium, causing it to oscillate or vibrate, but not to move along with the wave. - Statement IV is incorrect because most waves require a medium through which to propagate. For example, sound waves require air, water waves require water, and seismic waves require the Earth's crust. There are some types of waves, such as electromagnetic waves, that can propagate through a vacuum, but this is not true for all waves.
Frage 18 Bericht
The conductivity of gases at low pressure can be termed as
I. hot cathode emission
II. thermo ionic emission
III. cold cathode emission
IV. Field emission
Antwortdetails
As conduction of gases is at low pressure and high voltage, called field or cold cathode emission.
Frage 19 Bericht
A metal rod has a length of 100cm at 200oC . At what temperature will its length be 99.4cm. If the linear expansivity of the material of the rod is 2 × 10−5C−1
Antwortdetails
The linear expansivity of a material describes how its length changes with temperature. If the linear expansivity is given as 2 × 10^-5/°C, this means that for every 1°C change in temperature, the length of the material will change by 2 × 10^-5 times its original length. Given that the rod has a length of 100 cm at 200°C, we can use this information to find its length at a different temperature. If we let L be the length of the rod at temperature T, we can write the relationship as follows: L = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) To find the temperature at which the rod will have a length of 99.4 cm, we can set L equal to 99.4 cm and solve for T: 99.4 cm = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) 99.4 cm / 100 cm = 1 + 2 × 10^-5 * (T - 200°C) 0.994 = 1 + 2 × 10^-5 * (T - 200°C) -0.006 = 2 × 10^-5 * (T - 200°C) -0.006 / 2 × 10^-5 = T - 200°C -0.006 / (2 × 10^-5) = T - 200°C -0.006 / (2 × 10^-5) + 200°C = T So the temperature at which the rod will have a length of 99.4 cm is approximately equal to -0.006 / (2 × 10^-5) + 200°C, or -100°C. Therefore, the answer is -100°C.
Frage 20 Bericht
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Antwortdetails
P = 0.2cm, L = r = 23cm
VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Frage 21 Bericht
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Antwortdetails
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
using | α | = | l2 - l1 l1 ΔT |
15(10) | = | l2 - l1 2.5(5) |
l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Frage 22 Bericht
The mass of a nucleus is the
Antwortdetails
The mass of a nucleus is the total number of its protons and neutrons. The protons and neutrons are the subatomic particles that make up the nucleus of an atom. The mass of an atom is mostly concentrated in its nucleus, and the electrons orbiting the nucleus have a much smaller mass. Therefore, the mass of an atom is mostly determined by the number of protons and neutrons in its nucleus. The number of protons determines the element, and the number of neutrons can vary, resulting in isotopes of that element.
Frage 23 Bericht
Which of the following bodies, each with centre of gravity G, lying on a horizontal table, is/are in unstable equilibrium?
Antwortdetails
- I and II are in neutral equilibrium. They will roll continuously on the table
- III is a body with high centre of gravity (unstable)
- IV is a body with high centre of gravity (stable)
Frage 24 Bericht
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is
Antwortdetails
The point at which the molecules of a loaded wire begin to slide across each other resulting in a rapid increase in extension is called the yield point. At this point, the material no longer behaves elastically and becomes permanently deformed. The yield point is an important parameter in material science and engineering as it indicates the maximum stress a material can withstand before it begins to deform plastically. Therefore, the yield point is a critical factor to consider when designing materials for specific applications.
Frage 25 Bericht
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Antwortdetails
all the parallel forces must be equal in magnitude and direction
Frage 26 Bericht
Workdone on an object to bring it to a certain point in space is called
Antwortdetails
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Frage 27 Bericht
An alternating current can induce voltage because it has
Antwortdetails
An alternating current can induce voltage because it has a varying magnetic field. An alternating current (AC) is an electrical current that periodically reverses direction, unlike direct current (DC), which flows in one direction. When an AC current flows through a wire, it generates a magnetic field that changes direction with the current. As the current alternates, the magnetic field expands and contracts, inducing an electromotive force (EMF) in any nearby conductor or coil of wire. This phenomenon is known as electromagnetic induction, and it is the basis for the operation of many electrical devices, such as generators and transformers. The induced voltage depends on the strength and rate of change of the magnetic field and the number of turns in the coil. In summary, an alternating current can induce voltage because it creates a varying magnetic field, which in turn generates an electromotive force in nearby conductors or coils of wire, according to the principle of electromagnetic induction.
Frage 28 Bericht
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Antwortdetails
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Frage 29 Bericht
A ray of light passes through the centre of curvature of a concave mirror and strikes the mirror. At what angle is the ray reflected?
Antwortdetails
When a light ray passes through the center of curvature of a concave mirror and strikes the mirror, the reflected ray will be reflected back on itself, creating an angle of 0 degrees. Therefore, the correct answer is 0o.
Frage 30 Bericht
In a slide wire bridge, the balance is obtained at a point 25cm from one end of wire 1m long. The resistance to be tested is connected to that end and a standard resistance of 3.6Ω is connected to the other end of the wire. Determine the value of the unknown resistance
Antwortdetails
R3.6=7525=13
3R = 3.6
R = 1.2Ω
Frage 31 Bericht
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Antwortdetails
v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
v | = | 2 × 4x | = | 8 | ms |
Frage 32 Bericht
One newton × One meter equals?
Antwortdetails
One newton times one meter is equal to one Joule. A newton is the unit of measurement for force, and a meter is the unit of measurement for distance. When force is applied over a distance, work is done, which is measured in Joules. Therefore, one newton multiplied by one meter results in one Joule of work done. The other options listed (one water, one ampere, one kilogram) are not correct units of measurement for this calculation.
Frage 33 Bericht
The distance between an object and its real image in a convex lens is 40cm. If the magnification of the image is 3, calculate the focal length of the lens
Antwortdetails
u + v = 40
vu = 3
v = 3u
u + 3u = 40
4u = 40
u = 10cm
v = 3u = 30cm
f = uvu+v=10(30)10+30=30040
= 7.5 cm
Frage 34 Bericht
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Antwortdetails
Latent heat or specific latent heat = L
Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Frage 35 Bericht
The limiting frictional force between two surfaces depends on
I. the normal reaction between the surfaces
II. the area of surface in contact
III. the relative velocity between the surfaces
IV. the nature of the surfaces
Antwortdetails
- Friction depends on the nature of the surfaces in contact
- Solid friction is independent of the area of the surfaces in contact and the relative velocity between the surfaces.
Frage 36 Bericht
The lead-acid accumulator consists of
Antwortdetails
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Frage 37 Bericht
The part of the human eye that does similar work as the diaphragm of a camera lens is the
Antwortdetails
The part of the human eye that does similar work as the diaphragm of a camera lens is the iris. The iris is the colored part of the eye and is responsible for controlling the amount of light that enters the eye. Just like the diaphragm in a camera lens, the iris can adjust its size to allow more or less light into the eye. This helps to regulate the amount of light reaching the retina, which is responsible for sensing light and transmitting the image to the brain.
Frage 38 Bericht
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Antwortdetails
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
P1 V1 T1 | = | P2 V2 T1 |
V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Frage 39 Bericht
The value of T in the figure above is
Antwortdetails
Tsin30 + Tsin30 =40
2Tsin30 = 40
Tsin30 = 40/2 = 20
T(12 ) = 20
T = 20 x 2 = 40N
Frage 40 Bericht
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Antwortdetails
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Möchten Sie mit dieser Aktion fortfahren?