Ana loda....
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
Danna nan don rufewa |
Tambaya 1 Rahoto
Ripple in a power supply unit is caused by
Bayanin Amsa
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Tambaya 2 Rahoto
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Bayanin Amsa
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Tambaya 3 Rahoto
A straight wire 15cm long, carrying a current of 6.0A is in a uniform field of 0.40T. What is the force on the wire when it is at right angle to the field
Bayanin Amsa
The force on a current-carrying wire in a uniform magnetic field can be calculated using the equation: F = BILsinθ where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, L is the length of the wire in meters, and θ is the angle between the wire and the magnetic field. In this problem, the wire is 15cm long (0.15m), carrying a current of 6.0A, and the magnetic field is 0.40T. The angle between the wire and the magnetic field is 90 degrees (since the wire is at right angles to the field). Substituting the given values into the equation, we get: F = (0.40T)(6.0A)(0.15m)sin90 sin90 = 1, so we can simplify the equation to: F = (0.40T)(6.0A)(0.15m) F = 0.36N Therefore, the force on the wire is 0.36N. Answer option C is the correct answer.
Tambaya 4 Rahoto
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Bayanin Amsa
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Tambaya 5 Rahoto
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Bayanin Amsa
P = 0.45cm, L = 60cm, Eff = 75/π%
VR | (Screw | system) | = | 2πrP | = | 2πLP |
M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Tambaya 6 Rahoto
When a girl moves towards a plane mirror at a speed of 4.0m/s, the distance between the girl and her image reduces a speed of
Bayanin Amsa
v | = | dt | or | v | α | d |
d = x, v = 4m/s
d = 2x, v = ? (girl and image)
v | = | 2 × 4x | = | 8 | ms |
Tambaya 7 Rahoto
A car moving at 20m/s with its horn blowing (f = 1200Hz) is chasing another car going at 15m/s. What is the apparent frequency of the horn as heard by the driver being chased?
Bayanin Amsa
f1 | = | f(v - vo )v - vs | = | 1200(340 - 15)340 - 20 | = | 1.22KHz |
Tambaya 8 Rahoto
A mixture of blue and red pigment when illuminated by white light will appear
Bayanin Amsa
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Tambaya 9 Rahoto
A copper rod, 5m long when heated through 20c, expands by 1mm. If a second copper rod, 2.5m long is heated through 5c, by how much will it expand?
Bayanin Amsa
l1
= 5m, ΔT = 10c, l2
- l1
= 1mm
l1
= 2.5m, ΔT = 5c, l2
- l1
= ?
using | α | = | l2 - l1 l1 ΔT |
15(10) | = | l2 - l1 2.5(5) |
l2 | - | l2 | = | 2.5(5)5(10) | = | 14 | = | 0.25mm |
Tambaya 10 Rahoto
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Bayanin Amsa
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Tambaya 11 Rahoto
Which of the following characteristics of a wave is used in the measurement of the depth of the Sea?
Bayanin Amsa
Depth of sea can be measured by echo, a reflected sound waves.
Tambaya 12 Rahoto
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Bayanin Amsa
n = 200, S = 132 rev/min, v = 350m/s2
f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
λ | = | vf | = | 350440 | = | 0.875m |
Tambaya 13 Rahoto
Neutrons were discovered by
Bayanin Amsa
Neutrons were discovered by James Chadwick. In 1932, he conducted an experiment in which he bombarded a thin sheet of beryllium with alpha particles. He observed that a new type of radiation was emitted that was not affected by electric or magnetic fields. He concluded that this radiation was composed of particles that were neutral and had a mass similar to that of a proton. He called these particles "neutrons," and his discovery revolutionized our understanding of atomic structure and led to the development of nuclear energy.
Tambaya 14 Rahoto
According to kinetic molecular model, in gases
Bayanin Amsa
In kinetic molecular model, gases are energised and thus moves freely, fast as they occupy specific space
Tambaya 15 Rahoto
A body was slightly displaced from its equilibrium position. Which one of the following is a condition for its stable equilibrium
Bayanin Amsa
The condition for stable equilibrium of a body that has been slightly displaced from its equilibrium position is "an increase in the potential energy of the body." When an object is at its equilibrium position, it has a minimum potential energy. When the object is displaced from its equilibrium position, it has a higher potential energy. For the object to be in stable equilibrium, it must be able to return to its equilibrium position after it has been displaced. If the potential energy of the object increases as it is displaced, it means that the equilibrium position is a point of stable equilibrium. This is because the object will experience a restoring force that will push it back towards its equilibrium position, as the potential energy decreases. Therefore, an increase in potential energy is a condition for a body to be in stable equilibrium after it has been slightly displaced from its equilibrium position. An increase in kinetic energy or height does not necessarily indicate stability, as it depends on the specific situation and other factors at play.
Tambaya 16 Rahoto
According to kinetic molecular model, in gases
Bayanin Amsa
According to the kinetic molecular model, in gases, the molecules are very fast apart and occupy all the space made available. This means that gas molecules are in constant random motion and they move freely in all directions without any regular arrangement. They collide with each other and with the walls of the container, exerting pressure. The temperature of the gas is related to the average kinetic energy of the gas molecules. The higher the temperature, the faster the gas molecules move, and the higher the kinetic energy.
Tambaya 17 Rahoto
A single force which produces the same effect as a set of forces acting together at a point is known as the
Bayanin Amsa
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Tambaya 18 Rahoto
In Sunlight, a blue flower looks blue because we see the flower by the light it
Bayanin Amsa
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Tambaya 19 Rahoto
The statement 'Heat lost by the hot body equals that gained by the cold one' is assumed when determining specific that heat capacity by the method of mixtures. Which of the following validates the assumption?
I. Lagging the Calorimeter
II. Ensuring that only S.I units are used
III. Weighing the calorimeter, the lid and the stirrer.
Bayanin Amsa
The assumption 'Heat lost by the hot body equals that gained by the cold one' is based on the law of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one system to another. Thus, to validate this assumption, it's important to have a well-designed and insulated calorimeter so that as little heat as possible is lost to the environment. This is accomplished by lagging the calorimeter (Option I). Additionally, using the correct units (Option II) helps ensure that the energy transfer is accurately calculated and reported. Weighing the calorimeter, the lid, and the stirrer (Option III) is important for accurately measuring the amount of heat transferred, but by itself is not enough to validate the assumption. Therefore, the correct answer is "I and III only".
Tambaya 20 Rahoto
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Bayanin Amsa
all the parallel forces must be equal in magnitude and direction
Tambaya 21 Rahoto
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because
Bayanin Amsa
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce a temperature increase because all the heat is used to break the bonds holding the molecules of the solid together
Tambaya 22 Rahoto
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Bayanin Amsa
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Tambaya 23 Rahoto
Which of the following statement about the electromagnet shown above is correct?
Bayanin Amsa
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Tambaya 24 Rahoto
The angular dispersion of a prism depends on
Bayanin Amsa
Dispersion is due to different refractive indices speeds and wavelengths.
Tambaya 25 Rahoto
The pin-hole camera produces a less sharply defined image when the
Bayanin Amsa
The pin-hole camera produces a less sharply defined image when the pin-hole is larger. A pin-hole camera works by allowing light to pass through a small hole (the pin-hole) and project an inverted image of the outside world onto a screen or surface located behind the hole. The smaller the pin-hole, the sharper the resulting image, as light passing through a smaller hole produces less diffraction or spreading out of the light. When the pin-hole is larger, more light enters the camera, but the light rays also become more scattered, resulting in a less well-defined image. This is because the larger opening allows more light rays to enter at different angles, creating a wider range of paths that the light can take as it travels through the camera and onto the screen. As a result, the image is less clear and less defined, with less sharp edges and more blurring. is the correct answer because it correctly identifies the effect of a larger pin-hole on the image produced by the pin-hole camera. less illumination, would actually produce a dimmer image, but it would not affect the sharpness or definition of the image. the distance of the screen from the pin-hole, and the distance of the object from the pin-hole, would affect the size of the image and the scale of the objects, but they would not affect the sharpness or definition of the image.
Tambaya 26 Rahoto
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Bayanin Amsa
R = th = 2cm, d = 0.67cm
n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Tambaya 27 Rahoto
When the temperature of a liquid is increased, its surface tension
Bayanin Amsa
Surface tension or elasticity of a fluid decreases with increased in temperature
Tambaya 28 Rahoto
In semi-conductor, the carriers of current at room temperature are
Bayanin Amsa
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Tambaya 29 Rahoto
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Bayanin Amsa
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Tambaya 30 Rahoto
The volume of 0.354g of helium at 273°C and 114cm of mercury pressure is 2667cm3 . Calculate the volume
Bayanin Amsa
m = 0.354g, T1
= 273°C = 273 + 273 = 576K
P1
= 114cmHg, V1
= 2667cm3
at STP
T2
= 273K, P2
= 76cmHg, V2
= ?
P1 V1 T1 | = | P2 V2 T1 |
V2 | = | 114 × 2667 × 27376 × 576 | = | 2000.25cm3 |
Tambaya 31 Rahoto
The following are some units
I. Ns
II. Non
III. Nm−2
IV. J°K−1
V. JKj−1
What are the units of latent heat?
Bayanin Amsa
Latent heat or specific latent heat = L
Heat | energy | = | mL | or | L | = | Hm | = | energymass |
Tambaya 32 Rahoto
The lower fixed part of a faulty thermometer reads 2°C while the upper fixed point is 100°C.
What is the true temperature when the thermometer reads 51°C?
Bayanin Amsa
Since the thermometer is faulty, it is not measuring the temperature accurately. To find the true temperature, we need to determine the extent of the error in the thermometer. We can do this by comparing the difference between the lower fixed point and the reading with the difference between the upper fixed point and the true temperature. Since the lower fixed point reads 2°C and the upper fixed point reads 100°C, and the thermometer reading is 51°C, we can calculate the error as follows: True temperature = (51°C - 2°C) / (51°C - 2°C) * (100°C - 51°C) + 51°C = 50°C So, the true temperature when the thermometer reads 51°C is 50°C, which is option B.
Tambaya 33 Rahoto
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Bayanin Amsa
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Tambaya 35 Rahoto
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Bayanin Amsa
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Tambaya 36 Rahoto
The Earth's magnetic equator passes through Jos in Nigeria. At Jos, the
Bayanin Amsa
The Earth has a magnetic field that is generated by the movement of molten iron in its core. The magnetic field has different properties at different locations on the Earth's surface. The magnetic equator is an imaginary line on the Earth's surface where the inclination or tilt of the Earth's magnetic field is zero, meaning that the magnetic field lines are parallel to the Earth's surface. At Jos, Nigeria, the Earth's magnetic equator passes through, which means that the angle of inclination or dip of the Earth's magnetic field is zero. Therefore, the correct answer is that the angle of dip is zero. This means that a magnetic needle suspended by a thread or placed on a horizontal surface would remain horizontal and not point downwards or upwards, as it would at other locations on the Earth's surface. This makes Jos an important location for studying the Earth's magnetic field and for conducting experiments related to magnetism.
Tambaya 37 Rahoto
The diagram shows four positions of the bob of a simple pendulum. At which of these positions does the bob have maximum kinetic energy and minimum potential energy
Bayanin Amsa
At position 1, the bob of the simple pendulum has the maximum potential energy and zero kinetic energy. At position 4, the bob has the maximum kinetic energy and minimum potential energy. To understand this, we need to know that the energy of a simple pendulum is converted back and forth between kinetic energy and potential energy as it swings back and forth. When the bob is at its highest point (position 1), it has the maximum potential energy because it is farthest from the ground and has the most potential to move downward. At this point, the bob has zero kinetic energy because it is momentarily at rest. As the bob swings downward towards the equilibrium point, it gains speed and its potential energy is converted to kinetic energy. At the equilibrium point (position 2), the bob has equal amounts of kinetic and potential energy. As the bob continues to move downward, its potential energy decreases and its kinetic energy increases. At position 3, the bob has minimum potential energy and some amount of kinetic energy. At the lowest point of its swing (position 4), the bob has maximum kinetic energy because it is moving at its fastest speed. At this point, the bob has minimum potential energy because it is closest to the ground and has the least amount of potential to move downward. So, to summarize, the bob has maximum potential energy at position 1, equal amounts of kinetic and potential energy at position 2, minimum potential energy at position 3, and maximum kinetic energy at position 4.
Tambaya 38 Rahoto
Workdone on an object to bring it to a certain point in space is called
Bayanin Amsa
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Tambaya 39 Rahoto
Any line or section taken through an advancing wave in which all the particles are in the same phase is called the
Bayanin Amsa
The answer is: wave front. A wave front is any imaginary line or surface that connects all points of a wave that are in the same phase, meaning they are at the same point in their cycle. In other words, it is a line or surface that separates the points of a wave that are in-phase from those that are out-of-phase. For example, consider the ripples on the surface of a pond when a stone is thrown in. The wave fronts are the concentric circles that emanate from the point where the stone entered the water. All points along a given circle are in-phase, meaning the water molecules at those points are at the same point in their oscillation cycle. In summary, a wave front is a line or surface that separates points in a wave that are in-phase from those that are out-of-phase.
Tambaya 40 Rahoto
Which of the following readings cannot be determined with a meter rule?
Bayanin Amsa
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Za ka so ka ci gaba da wannan aikin?