Ana loda....
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
Danna nan don rufewa |
Tambaya 1 Rahoto
The diagram shows a uniform meter rule AB which balances horizontally at the 90cm mark when a mass of 0.2kg is suspended from B. Calculate the mass of the meter rule.
Bayanin Amsa
Mr
(90 - 50) = 0.2(100 - 90)
40Mr
= 0.2 × 10
Mr
= 240
= 0.05kg
Tambaya 2 Rahoto
During the transformation of matter from the solid to the liquid state, the heat supplied does not produce temperature increase because
Bayanin Amsa
When a solid is heated to its melting point, the heat supplied is used to overcome the intermolecular forces holding the molecules in a fixed position, resulting in the breaking of these bonds. As a result, the solid transforms into a liquid without any change in temperature. This is because the heat energy supplied is used in breaking the bonds between molecules rather than increasing the kinetic energy of the molecules, which is what causes an increase in temperature. Therefore, the correct option is: "all the heat is used to break the bonds holding the molecules of the solid together."
Tambaya 3 Rahoto
Ripple in a power supply unit is caused by
Bayanin Amsa
The correct option is "Using a zener diode" as fluctuation of d.c signal results from the rectification of a.c to d.c.
Tambaya 4 Rahoto
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Bayanin Amsa
- angle of dip is zero at the magnetic equator
- angle of variation is the same as angle of declination.
Tambaya 5 Rahoto
Which of the following is/are the limitations to the Rutherford's atomic models?
I. It is applicable when energy is radiated as electrons are revolving
II. It is applicable when energy is radiated in a continuous mode
III. It is applicable to an atom with only one electron in the other shell
Bayanin Amsa
Rutherford assumed that (I) energy is radiated when electrons are revolving (II) energy is radiated in a continuous mode. These are limitations of Rutherford's model
Tambaya 6 Rahoto
The angular dispersion of a prism depends on
Bayanin Amsa
Dispersion is due to different refractive indices speeds and wavelengths.
Tambaya 7 Rahoto
Which of the following statement about the electromagnet shown above is correct?
Bayanin Amsa
A - B = S - N.
Also, starting end of the current is south while terminating end is North.
Tambaya 9 Rahoto
An object is acted upon by a system of parallel three causing the object to be in state equilibrium. Which of the following statement is not correct
Bayanin Amsa
all the parallel forces must be equal in magnitude and direction
Tambaya 10 Rahoto
The earth's gravitational field intensity at its surface is about
(G = 6.7 × 10−11 Nm2 /kg2 , mass of the earth is 6 × 1024 kg, radius of the earth is 6.4 × 106 m, g on the earth = 9.8m/s2 )
Bayanin Amsa
The earth's gravitational field intensity at its surface can be calculated using the formula: g = G * M / r^2 where G is the gravitational constant, M is the mass of the earth, r is the radius of the earth, and g is the gravitational field intensity at the surface of the earth. Substituting the given values, we get: g = (6.7 × 10^-11 Nm^2/kg^2) * (6 × 10^24 kg) / (6.4 × 10^6 m)^2 g = 9.8 N/kg (approx.) Therefore, the answer is 9.8N/kg.
Tambaya 11 Rahoto
A mass of 0.5kg is whirled in a vertical circle of radius 2m at a steady rate of 2 rev/s. Calculate the centripetal force
Bayanin Amsa
The centripetal force is the force that acts towards the center and keeps an object moving in a circular path. To calculate the centripetal force, we can use the following formula: f = m * v^2 / r where: - f = centripetal force - m = mass of the object (0.5 kg) - v = velocity of the object (2 rev/s * 2 * pi m/rev = 12.57 m/s) - r = radius of the circle (2 m) Plugging in the values, we get: f = 0.5 kg * 12.57 m/s^2 / 2 m f = 31.43 N Rounding to the nearest whole number, the centripetal force is 31 N. So, the closest answer from the options is 160N.
Tambaya 12 Rahoto
Water and Kerosine are drawn respectively into the two limbs of a Hare's apparatus. The destiny of water is 1.0gcm−3 and the density of kerosine is 0.80gcm−3 . If the height of the water column is 20.0cm, calculate the height of the kerosine column.
Bayanin Amsa
Devices with different liquids
d1
h1
= d2
h2
1 × 20 = 0.8 × h
h | = | 200.8 | = | 25cm |
Tambaya 13 Rahoto
The pitch of a screw jack is 0.45cm and the arm is 60cm long. If the efficiency of the Jack is 75/π %, calculate the mechanical advantage.
Bayanin Amsa
P = 0.45cm, L = 60cm, Eff = 75/π%
VR | (Screw | system) | = | 2πrP | = | 2πLP |
M.A | = | Eff% × VR100 | = | 75π | × | 1100 | × | 2π × 600.45 | = | 75 × 800300 | = | 200 |
Tambaya 14 Rahoto
A body moves in SHM between two point 20m on the straight line Joining the points. If the angular speed of the body is 5 rad/s. Calculate its speed when it is 6m from the center of the motion.
Bayanin Amsa
From two parts 20m apart
a = 10m, x = 6m, A = 5
V = ω√A2−X2
= 5√102−62
= 40m/s
Tambaya 15 Rahoto
The momentum of a car moving at a constant speed in a circular track
Bayanin Amsa
Movement of an object in a circle with an acceleration towards its center is provided by change in velocity and centripetal force a α V α Fc
Tambaya 16 Rahoto
Workdone on an object to bring it to a certain point in space is called
Bayanin Amsa
The work done on an object to bring it to a certain point in space is called "Potential Energy". Potential energy is a form of energy that an object possesses due to its position relative to other objects. When an object is lifted or moved to a higher point against gravity, work is done on it, and this work is stored as potential energy. The potential energy of an object is directly proportional to its height and mass. It can be converted into other forms of energy, such as kinetic energy, when the object is released or allowed to move freely. Therefore, potential energy is a type of stored energy that an object has due to its position, and it can be released to do work.
Tambaya 17 Rahoto
In Sunlight, a blue flower looks blue because we see the flower by the light it
Bayanin Amsa
In sunlight, a blue flower looks blue because it reflects blue light. When sunlight falls on an object, the object can either absorb, transmit, or reflect the light. The color of an object that we see is determined by the light that is reflected by that object. For example, if an object appears blue, it is because it reflects blue light and absorbs other colors. In the case of a blue flower in sunlight, the petals of the flower reflect blue light and absorb other colors. This reflected blue light enters our eyes, and our brain interprets it as the color blue. Therefore, we see the blue flower as blue because it reflects blue light, and that is the color that enters our eyes. In summary, the reason why a blue flower looks blue in sunlight is that it reflects blue light and absorbs other colors.
Tambaya 19 Rahoto
The height at which the atmosphere cases to exist is about 80km. If the atmospheric pressure on the ground level is 760mmHg, the pressure at a height of 20km above the ground level is
(ρm = 13.6g/cm3 ρ = 0.00013g/cm3 )
Bayanin Amsa
ρm
hm
= ρa
ha
13.68(760 - p) × 10−3
= 13 × 10−5
(20 × 103
)
760 | - | p | = | 13 × 10−5 × 20 × 103 13.68 × 10−3 | = | 19.00 | × | 101 |
760 - p = 190
p = 760 - 190 = 570mmHg
Tambaya 20 Rahoto
Three resistors with resistance 200Ω, 500Ω and 1kΩ are connected in series. A 6v battery is connected to either end of the combination. Calculate the potential difference between the ends of 200Ω resistance.
Bayanin Amsa
To calculate the potential difference between the ends of the 200Ω resistance, we need to use Ohm's Law, which states that the potential difference (V) across a resistor is equal to the current (I) flowing through the resistor multiplied by the resistance (R) of the resistor. First, we need to find the total resistance of the series combination of resistors. We add up the individual resistances: Total resistance = 200Ω + 500Ω + 1kΩ = 1.7kΩ Next, we can use Ohm's Law to find the current flowing through the circuit. We know that the battery voltage is 6V, and the total resistance is 1.7kΩ: I = V / R = 6V / 1.7kΩ = 0.0035A Now we can use Ohm's Law again to find the potential difference across the 200Ω resistor: V = IR = 0.0035A * 200Ω = 0.7V Therefore, the potential difference between the ends of the 200Ω resistance is 0.7V. The correct answer is option B.
Tambaya 21 Rahoto
A supply of 400V is connected across capacitors of 3μf and 6μf in series. Calculate the charge
Bayanin Amsa
CT | = | C1 × C2 C1 + C2 |
= | 3 × 63 + 6 |
= 189
= 2μf
Q = CV
⇒ 2 × 10−6
× 400
⇒ 800 × 10−6
C = 8 × 10−4
C
Tambaya 23 Rahoto
Which of the following statements is/are correct for a freely falling body?
I. the total is entirely kinetic
II. the ratio of potential energy to kinetic energy is constant
III. the sum of potential and kinetic energy is constant
Bayanin Amsa
The correct answer is "III only". A freely falling body is one that is falling under the influence of gravity and experiences no other force or constraint. In this situation, the total energy of the body is conserved, meaning that the sum of its potential and kinetic energy remains constant. The potential energy of a body is directly proportional to its height above the ground, and its kinetic energy is directly proportional to its velocity. As the body falls, its potential energy decreases and its kinetic energy increases, but the total energy remains constant. Statement III is correct because the sum of potential and kinetic energy is indeed constant for a freely falling body. Statement I is incorrect because the body has both potential and kinetic energy, so the total energy is not entirely kinetic. Statement II is incorrect because the ratio of potential energy to kinetic energy is not constant for a freely falling body, as both are changing as the body falls.
Tambaya 24 Rahoto
A well 1km deep is filled with a liquid of density 950kg/m3 and g = 10m/s2 , the pressure at the bottom of the well is
Bayanin Amsa
P = Pa + ρgh = (1.00 × 105
) + (950 × 10 × 1000)
P = 105
+ (95 × 105
) = 105
(1 + 95) = 96 × 105
P = 9.6 × 106
N/m2
Tambaya 25 Rahoto
A single force which produces the same effect as a set of forces acting together at a point is known as the
Bayanin Amsa
The single force which produces the same effect as a set of forces acting together at a point is known as the "resultant". In other words, the resultant is the net force that results from combining all the individual forces acting on an object. It represents the combined effect of all the forces acting on the object and is the force that would produce the same motion as the original set of forces acting together. Therefore, when solving problems in physics, it is often useful to find the resultant force in order to determine the overall effect of multiple forces on an object.
Tambaya 26 Rahoto
Heat may be transferred by conduction, convention and radiation. By which of these methods does heat travel through vacuum?
Bayanin Amsa
Heat can be transferred by conduction, convection, and radiation. Conduction is the transfer of heat through a material by the movement of heat-carrying particles, such as atoms or molecules, from one part of the material to another. This method of heat transfer is not possible in a vacuum, as there are no particles present to carry heat. Convection is the transfer of heat by the movement of a fluid, such as air or water. This method of heat transfer is also not possible in a vacuum, as there are no fluids present to carry heat. Radiation is the transfer of heat through electromagnetic waves, such as light or infrared radiation. This method of heat transfer does not require any material or fluid medium, and can therefore occur in a vacuum. Therefore, the answer is "Radiation only".
Tambaya 27 Rahoto
A mixture of blue and red pigment when illuminated by white light will appear
Bayanin Amsa
A mixture of blue and red pigment when illuminated by white light will appear purple. This is because when white light shines on a surface, it contains all the colors of the visible spectrum. When blue and red pigments are mixed together, they absorb all the other colors in the spectrum except for blue and red. Therefore, when white light shines on this mixture, the blue pigment absorbs all the colors except blue, while the red pigment absorbs all the colors except red. The result of this is that the blue and red pigments reflect only blue and red light, which then combines to form purple. Therefore, the mixture of blue and red pigments appears purple when illuminated by white light.
Tambaya 28 Rahoto
A siren having a ring of 200 hole makes 132 rev/min. A jet of air is directed on the set of holes. Calculate the frequency and wavelength in air of the note produced (take v = 350m/s)
Bayanin Amsa
n = 200, S = 132 rev/min, v = 350m/s2
f | = | ns | = | 200 | × | 132 | revmin | × | 1min60s | = | 440Hz |
λ | = | vf | = | 350440 | = | 0.875m |
Tambaya 29 Rahoto
The following are parts of the eye
I. Retina
II. Pupil
III. Iris
The correct equivalent in the camera in the same order are
Bayanin Amsa
- retina is similar to film
- pupil is similar to aperture
- iris is similar to diaphragm
Tambaya 30 Rahoto
If the time of flight is 96seconds, calculate the horizontal range through the point of projection.
Bayanin Amsa
Time of flight, T = 96s
R = (Ucosθ) *time* T = 640 × 96 = 61,440m
Tambaya 31 Rahoto
In semi-conductor, the carriers of current at room temperature are
Bayanin Amsa
In a semiconductor, the carriers of current at room temperature are both electrons and holes. Semiconductors are materials with properties that are in between those of conductors (e.g. metals) and insulators (e.g. rubber). At room temperature, a semiconductor crystal contains both free electrons and positively charged vacancies called holes. When a voltage is applied across the semiconductor, the electrons move towards the positive end of the circuit and the holes move towards the negative end. This movement of charge carriers constitutes an electric current. In summary, both electrons and holes can carry current in a semiconductor at room temperature, making the correct answer.
Tambaya 32 Rahoto
The lead-acid accumulator consists of
Bayanin Amsa
- the positive pole is lead peroxide (PbO2
)
- the negative pole is head
- the electrolyte is H2
SO4
Tambaya 33 Rahoto
Calculate the velocity ratio of a screw jack of pitch 0.2cm if the length of the tommy bar is 23cm
Bayanin Amsa
P = 0.2cm, L = r = 23cm
VR | = | 2?rP | = | 2?LP | = | 2?×230.2 | = | 230? |
Tambaya 34 Rahoto
In the molecular explanation of conduction, heat is transferred by the
Bayanin Amsa
In the molecular explanation of conduction, heat is transferred by the Free electrons. In metals, free electrons move randomly and collide with other particles as they gain kinetic energy. These free electrons transfer the energy to the adjacent particles, which in turn gain kinetic energy and transmit it to other adjacent particles, thus transferring heat energy from one part of the material to another. This process of heat transfer by free electrons is called conduction. Therefore, the correct option is "Free electrons."
Tambaya 35 Rahoto
Which of the following media allow the transmission of sound waves through them?
I. air
II. liquid
III. solids
Bayanin Amsa
Sound waves are disturbances in a medium that propagate through the medium and transfer energy from one point to another. The transmission of sound waves depends on the physical properties of the medium, including its elasticity and density. Air (Option I) is a gas that is compressible and has a relatively low density, which makes it an excellent medium for transmitting sound waves. Liquids (Option II) are also able to transmit sound waves, although the speed of sound in liquids is slower than in gases because liquids are more dense and less compressible. Solids (Option III) are able to transmit sound waves as well, but their density and elasticity make them more rigid, which means that sound waves in solids tend to be transmitted as elastic waves or mechanical waves, rather than as acoustic waves. Therefore, the correct answer is "I, II, and III".
Tambaya 36 Rahoto
Which of the following readings cannot be determined with a meter rule?
Bayanin Amsa
Meter rule has a reading accuracy of 0.5mm or 0.05cm, thus measurement is M ± 0.05cm i.e 2.00, 2.05, 2.50, 2.55 etc.
The reading that cannot be read is 2.56cm.
Tambaya 37 Rahoto
A metal rod has a length of 100cm at 200oC . At what temperature will its length be 99.4cm. If the linear expansivity of the material of the rod is 2 × 10−5C−1
Bayanin Amsa
The linear expansivity of a material describes how its length changes with temperature. If the linear expansivity is given as 2 × 10^-5/°C, this means that for every 1°C change in temperature, the length of the material will change by 2 × 10^-5 times its original length. Given that the rod has a length of 100 cm at 200°C, we can use this information to find its length at a different temperature. If we let L be the length of the rod at temperature T, we can write the relationship as follows: L = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) To find the temperature at which the rod will have a length of 99.4 cm, we can set L equal to 99.4 cm and solve for T: 99.4 cm = 100 cm * (1 + 2 × 10^-5 * (T - 200°C)) 99.4 cm / 100 cm = 1 + 2 × 10^-5 * (T - 200°C) 0.994 = 1 + 2 × 10^-5 * (T - 200°C) -0.006 = 2 × 10^-5 * (T - 200°C) -0.006 / 2 × 10^-5 = T - 200°C -0.006 / (2 × 10^-5) = T - 200°C -0.006 / (2 × 10^-5) + 200°C = T So the temperature at which the rod will have a length of 99.4 cm is approximately equal to -0.006 / (2 × 10^-5) + 200°C, or -100°C. Therefore, the answer is -100°C.
Tambaya 38 Rahoto
If a body moves with a constant speed and at the same time undergoes an acceleration, its motion is said to be
Bayanin Amsa
If a body moves with a constant speed but at the same time undergoes an acceleration, its motion is called rectilinear motion. This means that the body moves in a straight line and its speed changes at a constant rate, causing an acceleration. It is different from oscillation, circular and rotational motions which involve changes in direction, as well as changes in speed.
Tambaya 39 Rahoto
If the attraction of the sun is suddenly ceased, the earth would continue to move in a straight line making a tangent with the original orbit. This statement is derived from Neutron's
Bayanin Amsa
The correct answer is the First law of motion. The First law of motion, also known as the law of inertia, states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In this case, the earth is moving in its orbit around the sun because of the force of gravity between the two objects. If the force of gravity suddenly ceased, the earth would no longer be acted upon by an external force and would continue to move in a straight line, making a tangent with its original orbit. This idea is attributed to Sir Isaac Newton, who developed the laws of motion and the law of universal gravitation. However, the specific statement mentioned in the question is derived from the First law of motion.
Tambaya 40 Rahoto
A microscope is focused on a mark on a table, when the mark is covered by a plate of glass 2m thick, the microscope has to be raised 0.67cm for the mark to be once more in focus. Calculate the refractive index.
Bayanin Amsa
R = th = 2cm, d = 0.67cm
n | = | RA | = | RR.d | = | 22-0.67 | = | 1.52 |
Za ka so ka ci gaba da wannan aikin?