Ana loda....
Latsa & Riƙe don Ja Shi Gabaɗaya |
|||
Danna nan don rufewa |
Tambaya 1 Rahoto
Electrical power is transmitted at a high voltage rather than a low voltage because the amount of energy loss is due to
Bayanin Amsa
The primary reason that power is transmitted at high voltages is to increase efficiency. As electricity is transmitted over long distances, there are inherent energy losses along the way. High voltage transmission minimizes the amount of power lost as electricity flows from one location to the next. How? The higher the voltage, the lower the current. The lower the current, the lower the resistance losses in the conductors. And when resistance losses are low, energy losses are low also. Electrical engineers consider factors such as the power being transmitted and the distance required for transmission when determining the optimal transmission voltage
Tambaya 2 Rahoto
The energy needed to move a unit positive charge around a complete electric circuit is called the
Bayanin Amsa
The energy needed to move a unit positive charge around a complete electric circuit is called the "electromotive force", also known as "emf". This is because the emf is what drives the flow of electric charge, or current, around the circuit. Think of it like a battery in a flashlight. The battery provides the emf that drives the flow of electric current through the wires and the light bulb. Without the emf from the battery, the electric charges wouldn't be able to flow and the light wouldn't turn on. The other answer options, such as electric potential difference and electric energy, are related to the emf but don't specifically refer to the energy needed to move a unit positive charge around a circuit. Kinetic energy, on the other hand, is not related to the movement of electric charges around a circuit at all.
Tambaya 3 Rahoto
Which of the following is true of an electrical charge?
Bayanin Amsa
The correct answer is option D: "All of the above." An electrical charge refers to the presence of an excess or deficit of electrons in an atom or molecule. In this context, positive charge means a deficit of electrons, whereas negative charge means an excess of electrons. Electric current refers to the flow of charged particles, typically electrons, through a conductor. Therefore, an electric current means the movement of electrons. In summary, all of the given options are true of an electrical charge, and they all relate to the behavior of electrons in an electrically charged system.
Tambaya 5 Rahoto
Which of the following phenomena cannot be explained by the molecular theory of matter?
Bayanin Amsa
Conduction: the flow of internal energy from a region of higher temperature to lower temperature
Convection: heat transfer due to bulk movement of molecules within fluids
Expansion: the action of becoming larger or more extensive
Tambaya 6 Rahoto
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Bayanin Amsa
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Tambaya 7 Rahoto
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Bayanin Amsa
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Tambaya 8 Rahoto
The inner diameter of a small test tube can be measured accurately using a
Bayanin Amsa
A vernier caliper is a measuring device used to precisely measure linear dimensions. It is a very useful tool to use when measuring the diameter of a round objects like cylinders because the measuring jaws can be secured on either side of the circumference.
Vernier calipers have both a fixed main scale and a moving vernier scale. The main scale is graduated in either millimetres or tenths of an inch. The vernier scale allows much more precise readings to be taken (usually to the nearest 0.02mm or 0.001 inch) in comparison to a standard ruler (which only measures to th nearest 1mm or 0.25 inch).
The vernier scale was invented by French mathematician Pierre Vernier in 1631. As part of the vernier caliper, it is used together with the main scale, and helps to provide very precise measurements. Vernier calipers usually show either imperial or metric measurements, but some measure in both.
Tambaya 9 Rahoto
Palm oil from a bottle flows out more easily after it has been heated because the
Bayanin Amsa
Molecules cannot be given energy during the heating and the molecules of oil cannot force each other out
Tambaya 10 Rahoto
When a known standard resistor of 2.0 is connected to the 0.0cm end of a meter bridge, the balance point is found to be at 55.0cm. What is the value of the unknown resistor?
Bayanin Amsa
A meter bridge is an instrument used to measure the unknown resistance of a conductor. The meter bridge consists of a long resistance wire AB of uniform cross-sectional area and a battery of known voltage connected across its ends. A galvanometer is connected across a point C on the wire, which is called the null point or balance point.
When a known standard resistor of 2.0 ohms is connected to the 0.0cm end of the meter bridge wire, the balance point is found to be at 55.0cm. This means that the resistance of the unknown resistor is equal to the resistance of a portion of the meter bridge wire between the 0.0cm and the 55.0cm point.
To find the value of the unknown resistor, we can use the principle of the Wheatstone bridge, which states that the ratio of the resistances in the two arms of a balanced bridge is equal.
Let R be the resistance of the unknown resistor, then we have:
R/2.0 = (100 - 55.0)/55.0
Simplifying this expression, we get:
R = 2.0 x (100 - 55.0)/55.0
R = 1.64 ohms
Therefore, the value of the unknown resistor is 1.64 ohms.
Tambaya 11 Rahoto
In the diagram shown, If the south-poles of two magnets stroke a steel bar, the polarities at T and V will respectively be
Tambaya 12 Rahoto
Convex mirrors are used as driving mirrors because images formed are
Bayanin Amsa
Convex mirrors are used as driving mirrors because the images formed by them are "erect, virtual, and diminished." Let me explain what these terms mean: - Erect: It means that the image appears upright, just like the actual object. This is important for a driving mirror because it allows the driver to perceive the correct orientation of the vehicles behind them. - Virtual: It means that the image appears to be behind the mirror, and not in front of it. This is also important for a driving mirror because it allows the driver to see a wider field of view without having to turn their head. - Diminished: It means that the image is smaller than the actual object. This is important for a driving mirror because it allows the driver to see a larger area behind them while still fitting it within the mirror's frame. Overall, these properties make convex mirrors ideal for use as driving mirrors as they provide the driver with an accurate view of the vehicles behind them without sacrificing their field of view.
Tambaya 13 Rahoto
The density of 400cm3 of palm oil was 0.9gcm-3 before frying. If the density of the oil was 0.6gcm-3 after frying, assuming no loss of oil due to spilling, its new volume was?
Bayanin Amsa
The density of a substance is defined as its mass per unit volume. Therefore, the mass of the palm oil before frying was: Mass = Density x Volume = 0.9 g/cm³ x 400 cm³ = 360 g After frying, the mass of the palm oil remains the same, but its density changes to 0.6 g/cm³. Therefore, the new volume of the palm oil can be calculated by rearranging the density formula: Volume = Mass / Density = 360 g / 0.6 g/cm³ = 600 cm³ So the new volume of the palm oil after frying is 600 cm³. is the correct answer.
Tambaya 14 Rahoto
What is the resultant resistance of the circuit in the image shown?
Bayanin Amsa
Formulae resistance in parallel
= 1/R = 1/R1 +1/R2
1/R = 1/2 +1/2 = 1
Resistance are now in series
R = 1 + 3 + 4
= 8 ohms
Tambaya 15 Rahoto
Which of the following is the dimension of pressure
Bayanin Amsa
The dimension of pressure is ML-1T-2 Pressure is defined as the force per unit area. This means that pressure is dependent on the force applied and the area over which it is applied. The unit of force is measured in Newtons (N), and the unit of area is measured in square meters (m2). Therefore, the unit of pressure is N/m2, which is also known as Pascals (Pa). To determine the dimension of pressure, we need to break down the units into their fundamental dimensions of mass (M), length (L), and time (T). Force is measured in N, which is kg m/s2. Area is measured in m2, which is L2. Therefore, the dimension of pressure can be calculated as (kg m/s2)/(L2), which simplifies to ML-1T-2.
Tambaya 17 Rahoto
An electric heating coil rated at 1KW is used to heat 2kg of water for 2 minutes. The initial water temperature is 30o C. Taking the specific heat of the water as 4,000Jkg −1 and neglecting that of the container, the final water temperature is
Bayanin Amsa
To determine the final temperature of the water, we can use the formula: Q = mcΔT where Q is the heat transferred, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. We know that the power of the electric heating coil is 1KW, which means it transfers 1000 Joules of energy per second. In 2 minutes, or 120 seconds, it transfers 120,000 Joules of energy to the water. The mass of the water is given as 2kg and the specific heat capacity of water is 4000 J/kg°C. We can assume that the initial temperature of the water is 30°C. Using the formula, we can solve for the change in temperature: 120,000 J = (2 kg)(4000 J/kg°C)(ΔT) ΔT = 15°C Therefore, the final temperature of the water is 30°C + 15°C = 45°C. So, the final water temperature is 45.0oC.
Tambaya 18 Rahoto
A solid cube of side 50cm and mass 75kg floats in a liquid with 13 of its height above the liquid surface. The relative density of the liquid is?
Bayanin Amsa
Volume of liquid displaced
= 23
(0.5)3
Mass of liquid displaced = mass of floating cube = 75kg
Density of liquid = massvolume
= 75(73(0.5))
× 3
= 0.9 × 103kgm−3
R.D of liquid = (0.9)(1.0)
× 103
= 0.9
Tambaya 19 Rahoto
The process whereby a liquid turns spontaneously into vapour is called
Bayanin Amsa
The process whereby a liquid turns spontaneously into vapor is called evaporation. Evaporation is the process by which a liquid changes into a gas at a temperature below its boiling point. This happens when the molecules of the liquid gain enough energy to escape from the surface of the liquid into the air as a gas. The rate of evaporation depends on factors such as the temperature, the humidity of the air, and the surface area of the liquid. For example, a shallow pool of water will evaporate faster than a deep one because it has a larger surface area. Boiling, on the other hand, is the process by which a liquid changes into a gas at its boiling point. This happens when the pressure of the gas generated by the boiling liquid is equal to the atmospheric pressure. The temperature remains constant during boiling. Regelation and sublimation are different processes altogether. Regelation is the process by which a solid changes into a liquid when it is subjected to pressure. Sublimation is the process by which a solid changes directly into a gas, bypassing the liquid state.
Tambaya 20 Rahoto
A car traveled at a uniform speed of 100km/h, spends 15m moving from point A to point B along its route. The distance between A and B is
Bayanin Amsa
To calculate the distance between point A and point B, we can use the formula: Distance = Speed x Time where the speed is given as 100 km/h and the time is given as 15 minutes, which we need to convert to hours. 1 hour = 60 minutes, so 15 minutes = 15/60 hours = 0.25 hours. Now, we can substitute these values into the formula: Distance = 100 km/h x 0.25 h = 25 km Therefore, the distance between point A and point B is 25 km. is the correct answer.
Tambaya 21 Rahoto
Which of the following concepts is not an evidence of the particles nature of matter?
Bayanin Amsa
The particle nature of matter refers to the idea that matter is made up of tiny particles that are constantly moving. Diffusion, Brownian motion, and crystallization are all examples of phenomena that can be explained by the particle nature of matter. However, diffraction is not an evidence of the particle nature of matter. Diffraction is a phenomenon that occurs when waves encounter an obstacle or a slit, causing them to spread out and interfere with each other. While particles can also exhibit diffraction, this is a property of waves and is not specific to particles. In summary, diffusion, Brownian motion, and crystallization are all evidences of the particle nature of matter, but diffraction is not.
Tambaya 22 Rahoto
One of the features of the fission process is that
Bayanin Amsa
The fission process refers to the splitting of an atomic nucleus into two or more smaller nuclei. One of the key features of the fission process is that it can lead to a chain reaction, where the neutrons released during fission can go on to trigger additional fission reactions. This chain reaction can produce a large amount of energy, as is the case in nuclear power plants and nuclear weapons. Another feature of the fission process is that it typically produces radioactive products. These products can remain radioactive for a long time, which is why there are concerns about the safe disposal of nuclear waste. Additionally, the fission process typically releases neutrons, which can go on to cause further fission reactions. This neutron release is an important aspect of the chain reaction mentioned earlier. Finally, the fission process is accompanied by a small loss of mass, which is converted into energy according to Einstein's famous equation E=mc². This loss of mass is what allows the large amount of energy to be released during a fission reaction.
Tambaya 23 Rahoto
A boy receives the echo of his clap reflected by a nearby hill 0.8s later. If the speed of sound in air is 3.40ms−1 , how far is he from the hill?
Bayanin Amsa
The speed of sound in air is given as 3.40 m/s. The echo of the clap is heard 0.8 seconds after it was produced, which means it traveled to the hill and back. The time taken for sound to travel to the hill is half of the time taken for it to travel to and from the hill. Therefore, the time taken for sound to travel to the hill is 0.8/2 = 0.4 seconds. We can use the formula: distance = speed x time to calculate the distance between the boy and the hill. distance = speed of sound x time taken for sound to travel to the hill distance = 3.40 m/s x 0.4 s distance = 1.36 m Therefore, the distance between the boy and the hill is 1.36 meters. However, the answer options provided are in meters and are significantly larger than 1.36 meters. It is possible that the speed of sound provided in the question is incorrect or the answer options are incorrect.
Tambaya 24 Rahoto
The differences observed in solids, liquids and gases may be accounted for by
Bayanin Amsa
The differences observed in solids, liquids, and gases can be accounted for by the spacing and forces acting between the molecules. In a solid, the molecules are packed closely together, so they have a fixed shape and volume. The intermolecular forces are strong enough to keep the molecules in a fixed position relative to one another. In a liquid, the molecules are still close together, but they are free to move around each other. The intermolecular forces are weaker than in a solid, so the molecules can slide past one another, giving the liquid its ability to flow and take the shape of its container. In a gas, the molecules are widely spaced and are in constant motion. The intermolecular forces are very weak, so the molecules are free to move around and fill any available space. Gases have no fixed shape or volume. So, the differences observed in solids, liquids, and gases can be explained by the spacing and forces acting between the molecules. It's not about their relative masses, melting points, or the different molecules in each of them.
Tambaya 25 Rahoto
A positively charged rod X is brought near an uncharged metal sphere Y and is then touched by a finger with X still in place. When the finger is removed, the result is that Y has
Bayanin Amsa
Tambaya 26 Rahoto
A man walks 1km due east and then 1 km due north. His displacement is
Bayanin Amsa
The man first walks 1 km due east, which means he has moved 1 km horizontally to the right of his starting point. Then, he walks 1 km due north, which means he has moved 1 km vertically upwards from his previous position. To find his displacement, we need to draw a straight line from his starting point to his final position, which represents the shortest distance between the two points. This line is called the displacement vector. We can use the Pythagorean theorem to calculate the length of the displacement vector. The horizontal and vertical distances are the two legs of a right-angled triangle, and the hypotenuse is the length of the displacement vector. Using the Pythagorean theorem, we get: displacement = √((1 km)^2 + (1 km)^2) = √2 km The direction of the displacement vector is the angle between the displacement vector and the due north direction. We can find this angle using trigonometry. The tangent of the angle is the ratio of the horizontal distance to the vertical distance: tan(θ) = (1 km) / (1 km) = 1 Using a calculator, we can find that the angle is 45°. Therefore, the man's displacement is √2 km in the direction N 45° E. So, the correct answer is √2km N 45°E.
Tambaya 27 Rahoto
Natural radioactivity consists of the emission of
Bayanin Amsa
Radioactive decay releases different types of energetic emissions. The three most common types of radioactive emissions are alpha particles, beta particles, and gamma rays.
Tambaya 28 Rahoto
The pitch of an acoustic device can be increased by
Bayanin Amsa
The pitch of an acoustic device refers to the perceived highness or lowness of a sound, and is determined by the frequency of the sound wave. To increase the pitch of an acoustic device, you need to increase the frequency of the sound wave. This can be done by increasing the number of vibrations per second that the device produces. So, the correct answer is to "increase the frequency".
Tambaya 29 Rahoto
In the diagram given the hanging mass m2 is adjusted until m1 is on the verge of sliding. The coefficient of static
Bayanin Amsa
I think the correct option is C (m2m1 ). The coefficient of friction is a ratio of two forces and hence g will cancel out.
Tambaya 30 Rahoto
The product of force and time is?
Bayanin Amsa
The product of force and time is known as impulse. Impulse can be defined as the change in momentum that an object experiences as a result of a force being applied to it over a period of time. In simpler terms, impulse is the "push" that an object receives from a force acting on it for a certain amount of time. The more force applied, or the longer the time the force is applied, the greater the impulse and the greater the change in momentum of the object. It's important to note that impulse is a vector quantity, meaning it has both magnitude and direction. Impulse is a measure of the ability of a force to cause an object to change its velocity, and can be used to explain many phenomena in physics, such as why a heavy object is harder to stop than a lighter one, or why a soccer ball changes direction when it is kicked.
Tambaya 31 Rahoto
When an atom loses or gain a charge it becomes
Bayanin Amsa
When an atom loses or gains a charge, it becomes an ion. An ion is a type of atom that has an unequal number of protons and electrons, giving it a net electrical charge. If an atom loses one or more electrons, it becomes positively charged and is called a cation. On the other hand, if an atom gains one or more electrons, it becomes negatively charged and is called an anion. So, in summary, an atom can lose or gain electrons to become an ion, which has a net electrical charge.
Tambaya 32 Rahoto
Temperature is the property of a body which is proportional to the ____.
Bayanin Amsa
Temperature is proportional to the average kinetic energy of the molecules in a body. This means that as the average kinetic energy of the molecules increases, so does the temperature. Think about it like this: the hotter an object, the more energy its molecules have. This energy is what makes the molecules move faster, and therefore, the temperature of the object increases. The average kinetic energy of the molecules is a better measure of temperature than the maximum speed of the molecules because temperature is a measure of the overall energy distribution, not just the energy of a single molecule.
Tambaya 33 Rahoto
Which of the following may be used to explain a mirage?
I. Layers of air near the road surface have varying refractive indices in hot weather
II. Road surfaces sometimes become good reflectors in hot weather
III. Light from the sky can be reflected upwards after coming close to the road surface.
Bayanin Amsa
The phenomenon of a mirage can be explained by options I and III. A mirage is an optical illusion that occurs when light rays passing through a medium with varying refractive indices create a false image of distant objects or even the sky. In hot weather, the air near the road surface becomes hotter and less dense than the air above, causing the light passing through it to bend and create a reflection of the sky or objects in the distance. This effect is known as a temperature inversion. Additionally, light from the sky can be reflected upwards after coming close to the road surface, adding to the illusion of a reflected object or the sky. Option II, which suggests that road surfaces become good reflectors in hot weather, is not a valid explanation for a mirage. Therefore, the correct answer is: I and III only.
Tambaya 34 Rahoto
A ball of mass 5.0kg hits a smooth vertical wall normally with a speed of 2ms?1
. Determine the magnitude of the resulting impulse
Bayanin Amsa
The magnitude of the resulting impulse can be calculated using the formula impulse = change in momentum. In this scenario, the ball experiences a change in velocity (speed) as it hits the wall. The ball's initial momentum is equal to its mass times its velocity, and its final momentum is zero since it comes to a stop after hitting the wall. The change in momentum is equal to the final momentum minus the initial momentum, which is equal to the negative of the initial momentum. Since the ball has a mass of 5.0 kg and a velocity of 2 m/s, its initial momentum is 5.0 kg * 2 m/s = 10.0 kg m/s. Therefore, the change in momentum is -10.0 kg m/s and the magnitude of the resulting impulse is 10.0 kg m/s, which is equal to 10.0 Ns. So, the correct answer is 10.0kgms−1.
Tambaya 35 Rahoto
Which of the following has the lowest internal resistance when new?
Bayanin Amsa
Among the given options, the Accumulator has the lowest internal resistance when new. Internal resistance is the resistance that a battery or cell provides to the flow of electric current within itself. Lower internal resistance means that the battery can supply more current to an external circuit without losing much of its own energy as heat. An Accumulator, also known as a rechargeable battery, is designed to be charged and discharged multiple times. It has a relatively low internal resistance when new, meaning it can provide a higher current than the other cells listed while wasting less energy internally as heat. A Leclanche cell and Daniell cell are primary cells, meaning they are designed to be used once and discarded. They have higher internal resistance compared to the accumulator, which limits their ability to supply high currents. A Torch battery, also known as a dry cell, is also a primary cell and has a higher internal resistance than the accumulator. It is commonly used in small electronic devices and has a longer shelf life than Leclanche and Daniell cells. In summary, an Accumulator has the lowest internal resistance when new, which makes it an ideal choice for applications requiring high current delivery such as electric vehicles, power tools, and renewable energy systems.
Tambaya 36 Rahoto
Cathode rays are
Bayanin Amsa
Cathode rays are streams of electrons. They were first discovered by scientists experimenting with vacuum tubes, and they observed that a glowing beam of particles traveled from the negatively charged electrode (the cathode) to the positively charged electrode (the anode). These particles were found to have a negative charge, which was later identified as electrons. Cathode rays played an important role in the development of electronics and the understanding of atomic structure.
Tambaya 37 Rahoto
Which of the following obeys Ohm's law?
Bayanin Amsa
Ohm's law states that the current passing through a conductor is directly proportional to the voltage applied across it, given the temperature and other physical conditions remain constant. Among the given options, only "all metals" obey Ohm's law. This is because metals have a linear relationship between their resistance and the applied voltage, meaning that the resistance of a metal remains constant regardless of the voltage applied. As a result, the current passing through a metal is directly proportional to the voltage applied, following Ohm's law. On the other hand, a diode, all electrolytes, and glass do not obey Ohm's law. A diode is a semiconductor that has a non-linear current-voltage relationship, and its resistance is not constant. Similarly, electrolytes and glass are non-metallic substances that do not have a linear relationship between their resistance and the applied voltage. Their resistance can change significantly with the voltage applied, and hence they do not follow Ohm's law.
Tambaya 38 Rahoto
Electrical appliances in homes are normally earthed so that
Bayanin Amsa
Electrical appliances in homes are normally earthed so that a person touching the appliances is safe from electric shock. Earthing provides a safety mechanism by connecting the metal case of an electrical appliance to the earth through a conductor. In the event of a fault in the appliance, such as a short circuit, the current will flow through the earth wire instead of the person's body, preventing electric shock. By connecting the metal case of an appliance to the earth, the potential difference (PD) between the appliance and the earth is reduced to zero, ensuring that the appliance is maintained at a lower PD than the earth. Therefore, "the appliances are maintained at a lower pd than the earth" is the correct answer.
Tambaya 39 Rahoto
Which of the following is an essential physical property of the wires uses for making fuses ?
Bayanin Amsa
The essential physical property of the wire used for making fuses is low melting point. This means that the wire should have a low temperature at which it melts and breaks, interrupting the flow of electrical current. This is important in a fuse because when there is an overload of electrical current, the wire will melt, breaking the circuit and preventing damage to the electrical system. The other options, low density, low electrical resistivity, and hypothermal conductivity, are not as important for a fuse wire. Low density is the property of a material to be light, and it doesn't necessarily affect the performance of a fuse wire. Low electrical resistivity is the property of a material to have low resistance to the flow of electrical current, and it doesn't necessarily affect the performance of a fuse wire either. Hypothermal conductivity is the property of a material to conduct heat poorly, and it also doesn't necessarily affect the performance of a fuse wire.
Tambaya 40 Rahoto
Mercury which is spilled onto a glass surface forms ball-like shapes because____.
Bayanin Amsa
In case of small drops of mercury, the gravitational potential energy is negligible in comparison to the potential energy due to surface tension.Consequently, to keep the drop in equilibrium, the mercury drop’s surface tends to contract so that its surface area will be the least for a sphere and the drops will be spherical.
But in the case of bigger drops of mercury, the potential energy due to gravity is predominant over the potential energy due to surface tension.Consequently, to keep equilibrium , the mercury drop tends to assume minimum potential energy as possible, the drop becomes oval in shape and lower center of gravity.
Za ka so ka ci gaba da wannan aikin?