A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
Which of the following statements about viruses is true?
Detalhes da Resposta
Viruses require a host cell to replicate. Viruses are not living organisms on their own. They are tiny infectious agents that can only replicate and multiply inside the cells of other living organisms. In order to reproduce, viruses depend on a host cell. They infect the host cell and take control of its machinery, directing it to produce more viruses. This process of using the host cell's machinery for replication is known as the viral life cycle. Once the new viruses are produced, they can go on to infect other cells and continue the cycle of reproduction. Therefore, it is true that viruses need a host cell to replicate.
Pergunta 2 Relatório
Which of the following statements is true regarding cell growth?
Detalhes da Resposta
Cell growth refers to the increase in size and mass of a cell. It is an essential process for living organisms as it allows them to develop and maintain healthy bodily functions. Now, let's address each statement and determine which one is true. 1. **Cell growth is solely influenced by external factors:** This statement is not true. While external factors such as nutrients, temperature, and pH can influence cell growth, it is not solely dependent on them. Internal factors, such as the genetic makeup of the cell and its ability to respond to signals, also play a crucial role in cell growth. 2. **Cell growth is a continuous process throughout the life of a cell:** This statement is also not true. Cell growth is generally a controlled process and takes place at specific times during the cell's life cycle. In some cases, cells can even stop growing and enter a state of dormancy or apoptosis (programmed cell death). So, cell growth is not continuous throughout the life of a cell. 3. **Cell growth involves an increase in the number of organelles within a cell:** This statement is partially true. While cell growth can involve an increase in the number of organelles within a cell, it is not the only factor. Cell growth also includes an increase in the size and volume of organelles, as well as the synthesis of new proteins and genetic material. 4. **Cell growth occurs by cell division:** This statement is true. Cell growth most commonly occurs through cell division, where a single cell divides into two daughter cells. This process, known as mitosis, allows for cell multiplication and subsequent growth of tissues and organs in multicellular organisms. In conclusion, the true statement regarding cell growth is that it occurs by cell division. However, it is important to note that cell growth is not solely influenced by external factors and is not a continuous process throughout the life of a cell. It involves not only an increase in the number of organelles but also an increase in their size and volume.
Pergunta 3 Relatório
Which of the following is a primary source of pollution in aquatic ecosystems?
Detalhes da Resposta
One primary source of pollution in aquatic ecosystems is **industrial discharge**. Industrial discharge refers to the release of waste materials and pollutants from industries into water bodies such as rivers, lakes, and oceans. These pollutants can include chemicals, heavy metals, oils, and other harmful substances. When not properly managed or treated, industrial discharge can have detrimental effects on aquatic ecosystems. These pollutants can contaminate the water, making it toxic and unsuitable for aquatic life. They can also disrupt the balance of nutrients and oxygen levels in the water, leading to the decline of certain species and the proliferation of others. Furthermore, industrial discharge can result in the accumulation of pollutants in the tissues of aquatic organisms, which can then enter the food chain. This can have cascading effects on the entire ecosystem, including bioaccumulation and biomagnification, where the concentration of pollutants increases as they move up the food chain, endangering higher-level predators and even humans who consume contaminated seafood. While the other options mentioned (soil erosion, air pollution, and deforestation) can indirectly contribute to water pollution, industrial discharge is a direct and significant source of pollution in aquatic ecosystems. Proper management, regulation, and treatment of industrial waste are necessary to minimize its harmful impact on the environment.
Pergunta 4 Relatório
Which of the following statements is true regarding sex-linked traits?
Detalhes da Resposta
Sex-linked traits are located on the sex chromosomes.
Many traits are determined by our genes, which are located on our chromosomes. In humans, we have 23 pairs of chromosomes, with one pair being the sex chromosomes. Females have two X chromosomes (XX), while males have one X and one Y chromosome (XY). The genes located on the sex chromosomes are called sex-linked genes. These sex-linked genes can carry traits, such as color blindness or hemophilia, that are more commonly observed in one gender over the other. For example, color blindness is more commonly observed in males because the gene for color vision is located on the X chromosome.
Since males only have one X chromosome, if they inherit a color blindness gene, they will display the trait. Females, on the other hand, have two X chromosomes, so if they inherit one normal X chromosome, they may not show the trait even if they carry the color blindness gene on their other X chromosome. It is not true that sex-linked traits are inherited solely from the mother. In reality, sex-linked traits can be inherited from either the mother or the father.
This is because both parents can pass on their sex chromosomes to their offspring. However, the frequency of inheritance may be different due to the nature of the sex chromosomes. For example, if the father carries a sex-linked trait on his X chromosome, all of his daughters will inherit that trait since they receive his X chromosome. However, his sons will not inherit the trait because they receive his Y chromosome instead.
It is not true that sex-linked traits are more commonly observed in females. The opposite is actually true. Since males only have one X chromosome, they are more likely to display the effects of a sex-linked trait if they inherit the gene. Females, on the other hand, have two X chromosomes, so they may not show the trait if they carry one normal X chromosome.
This means that sex-linked traits are more commonly observed in males. It is not true that sex-linked traits are not influenced by hormonal factors. In fact, hormonal factors can have an impact on the expression of sex-linked traits. Hormones can affect gene expression and overall development, which can influence the presentation of sex-linked traits.
For example, hormonal imbalances can affect the severity or appearance of certain sex-linked conditions. Therefore, hormonal factors can play a role in the expression and manifestation of sex-linked traits.
Pergunta 5 Relatório
Which of the following is a characteristic feature of Kingdom Plantae?
Detalhes da Resposta
One characteristic feature of Kingdom Plantae is the ability to perform photosynthesis. Photosynthesis is the process by which plants use sunlight, carbon dioxide, and water to produce glucose (a sugar) and release oxygen as a byproduct. This process occurs within specialized organelles called chloroplasts, which are found in plant cells. Chloroplasts contain a pigment called chlorophyll that absorbs light energy from the sun and facilitates the conversion of carbon dioxide and water into glucose and oxygen. Through photosynthesis, plants are able to produce their own food and energy, making them autotrophs. Autotrophs are organisms that can synthesize organic compounds from inorganic substances. This ability allows plants to sustain themselves and support the growth and development of their tissues and structures. The presence of chloroplasts and the ability to perform photosynthesis are crucial characteristics that differentiate Kingdom Plantae from other kingdoms, such as Kingdom Animalia. Animals lack chloroplasts and are unable to produce their own food through photosynthesis. Instead, animals usually obtain their energy by consuming other organisms, making them heterotrophs. Therefore, the correct characteristic feature of Kingdom Plantae is the ability to perform photosynthesis.
Pergunta 6 Relatório
Germination is the process in which a seed
Detalhes da Resposta
Germination is the process in which a seed breaks dormancy and starts to grow into a mature plant. During germination, the seed absorbs water and nutrients from the soil, causing it to swell and soften. This allows the seed coat to crack open, revealing the young root known as the radicle. The radicle grows downward, anchoring the seedling into the ground and absorbing water and nutrients from the soil. As the seedling continues to grow, it develops leaves and stems, allowing it to eventually photosynthesize and produce its own food. In summary, germination is the starting point of a seed's growth, where it absorbs nutrients, breaks dormancy, and begins to develop into a mature plant capable of photosynthesis. Germination is a crucial stage in a plant's life cycle as it marks the beginning of its growth and the establishment of a new plant.
Pergunta 7 Relatório
The membrane around the vacuole is known as
Detalhes da Resposta
The membrane around the vacuole is known as the **tonoplast**. The tonoplast is a special membrane that surrounds the vacuole, which is a large storage sac found in plant cells. It separates the contents of the vacuole from the rest of the cell. Think of the tonoplast like a protective bubble around the vacuole. It controls what goes in and out of the vacuole, just like a fence controls who can enter or exit a yard. The tonoplast is made up of proteins and lipids, which are like the building blocks that give it structure and function. One of the important functions of the tonoplast is to regulate the movement of water and other molecules in and out of the vacuole. It acts like a gatekeeper, allowing certain substances to enter or leave the vacuole while keeping others out. This helps the cell maintain its internal balance and prevents harmful substances from entering. Additionally, the tonoplast plays a role in maintaining the shape and stability of the vacuole. It helps the vacuole maintain its structure and prevents it from collapsing under pressure. So, to summarize, the membrane around the vacuole is called the tonoplast, and it serves as a protective barrier, regulates the movement of molecules, and helps maintain the shape of the vacuole.
Pergunta 8 Relatório
Which of the following is a plant hormone responsible for promoting cell elongation and growth?
Detalhes da Resposta
The plant hormone responsible for promoting cell elongation and growth is **Gibberellins**. Gibberellins play a vital role in regulating plant growth and development. They are primarily responsible for promoting cell elongation, which leads to the growth of stems and leaves. When plants receive signals such as sunlight or changes in their environment, they produce gibberellins. These hormones then move throughout the plant, stimulating the cells to elongate. This elongation allows the stems and leaves to grow taller or expand in size, enabling the plant to reach for sunlight, absorb nutrients, and carry out other essential functions. In addition to promoting cell elongation, gibberellins also influence other aspects of plant growth, such as seed germination, flowering, and fruit development. They can break seed dormancy, ensuring that the seed sprouts and grows into a seedling. They also regulate the flowering process, helping plants transition from vegetative to reproductive stages. Lastly, gibberellins control fruit development by influencing cell division, expansion, and ripening. In summary, gibberellins are plant hormones responsible for promoting cell elongation and growth. They play a crucial role in regulating various aspects of plant development, from stem and leaf growth to seed germination, flowering, and fruit development.
Pergunta 9 Relatório
Which of the following is an example of an abiotic ecological factor?
Detalhes da Resposta
An abiotic ecological factor refers to a non-living component of the environment that can affect living organisms. Out of the options provided, **temperature** is an example of an abiotic ecological factor. Temperature plays a crucial role in shaping the environment and influencing the distribution and survival of living organisms. It is a measure of how hot or cold a place or object is. For organisms, temperature affects their physiology, behavior, and overall survival. Different species have specific temperature ranges within which they can function optimally. Too high or too low temperatures can have adverse effects on their growth, reproduction, and overall health. Temperature influences the rate of biological processes in organisms. For example, enzymes, which are essential for various biochemical reactions in living things, have an optimum temperature at which they work most efficiently. Deviation from this temperature can cause enzymes to denature or become less effective, affecting an organism's ability to carry out essential metabolic functions. Moreover, temperature influences the availability and movement of water, which is a vital resource for living organisms. In colder environments, water may freeze, limiting its availability, while in hotter environments, water may evaporate quickly, making it harder for organisms to obtain and conserve water. In conclusion, **temperature** is an abiotic ecological factor because it is a non-living component that significantly affects the distribution, physiology, and overall survival of living organisms.
Pergunta 10 Relatório
What are the primary products of photosynthesis?
Detalhes da Resposta
The primary products of photosynthesis are **glucose and oxygen**. During photosynthesis, plants use sunlight, carbon dioxide, and water to produce glucose, which is a type of sugar. This process occurs in special structures called chloroplasts, which are found in the cells of plants. Here's how it works: 1. **Sunlight**: Plants capture sunlight using a pigment called chlorophyll, which is located in the chloroplasts. This chlorophyll absorbs the energy from sunlight. 2. **Carbon Dioxide**: Plants take in carbon dioxide from the atmosphere through tiny pores called stomata, which are present on their leaves. Carbon dioxide is a gas that is released by animals and is also present in the air we breathe out. 3. **Water**: Plants absorb water from the soil through their roots. This water is then transported up through the stems to the leaves. 4. **Photosynthesis**: Inside the chloroplasts, the energy from sunlight is used to convert carbon dioxide and water into glucose and oxygen. This process involves a series of chemical reactions that occur in multiple steps. The glucose produced during photosynthesis serves as a source of energy for the plant. It can be used immediately, stored as starch for later use, or used to make other compounds needed by the plant. The oxygen produced as a byproduct of photosynthesis is released into the atmosphere through the stomata. It is a vital component for most living organisms, including animals, as we need oxygen to survive and carry out cellular respiration.
Pergunta 11 Relatório
Which of the following is the most inclusive level of classification in the Linnaean system?
Detalhes da Resposta
The most inclusive level of classification in the Linnaean system is the kingdom.
Pergunta 12 Relatório
Which of the following statements is true about the kingdom Fungi?
Detalhes da Resposta
Fungi obtain nutrients by absorbing organic matter. This is a true statement about the kingdom Fungi. Unlike plants, which use photosynthesis to make their own food, fungi are heterotrophic organisms that get their energy by breaking down and absorbing organic materials around them. Fungi are not photosynthetic organisms. Photosynthesis is the process by which plants and some other organisms convert sunlight into energy. Fungi do not have chloroplasts or other structures needed for photosynthesis. Instead, they rely on obtaining nutrients from decaying organic matter or by forming symbiotic relationships with other organisms. Fungi can be both single-celled (yeasts) or multicellular (mushrooms, molds, etc.). Many fungi are multicellular organisms, composed of a network of thread-like structures called hyphae. These hyphae work together to form complex structures like mushrooms. However, there are also fungi that exist as single-celled organisms, such as yeast. Finally, fungi do not reproduce through the formation of seeds. Instead, they reproduce through spores. Spores are tiny structures that can be dispersed by wind, water, or other means. When conditions are favorable, these spores can germinate and develop into new fungal organisms. To summarize, the true statement about the kingdom Fungi is that they obtain nutrients by absorbing organic matter. They are not photosynthetic organisms, can be multicellular or single-celled, and reproduce through spores, not seeds.
Pergunta 13 Relatório
Digestive enzymes are responsible for
Detalhes da Resposta
Digestive enzymes play a crucial role in our digestive system. They are responsible for breaking down the food we eat into smaller molecules so that our bodies can absorb the nutrients more easily. When we eat, our food enters the stomach and then moves into the small intestine. Here, the digestive enzymes are released and start breaking down the carbohydrates, proteins, and fats present in our food. These enzymes help break down complex molecules into simpler ones. For example, amylase is an enzyme that breaks down carbohydrates into smaller sugar molecules like glucose. Proteases break down proteins into amino acids, while lipases break down fats into fatty acids and glycerol. Once these molecules are broken down, they can be easily absorbed into the bloodstream through the lining of the small intestine. This is where the nutrients are taken up by our body cells and used for energy, growth, and repair. In addition to breaking down food, digestive enzymes also help in regulating the pH of the digestive tract. The stomach, for instance, has a highly acidic environment due to the presence of hydrochloric acid. Digestive enzymes help maintain the optimal pH level needed for their proper functioning. Lastly, digestive enzymes are also involved in transporting food through the digestive system. Peristalsis, which is the movement of food through the digestive tract, is facilitated by these enzymes. In conclusion, digestive enzymes are responsible for breaking down our food into smaller molecules, absorbing the nutrients into the bloodstream, regulating the pH of the digestive tract, and transporting food through the digestive system. They play a vital role in ensuring proper digestion and nutrient absorption in our bodies.
Pergunta 14 Relatório
Which of the following statements about the heart is true?
Detalhes da Resposta
The correct statement is: The heart is a muscular organ that contracts to circulate blood throughout the body.
The heart is a vital organ that keeps us alive by pumping blood continuously throughout our body. It is a muscular organ located in the chest, slightly tilted towards the left.
The main function of the heart is to circulate blood throughout the body, delivering oxygen and nutrients to all the organs and tissues. It does this by continuously contracting and relaxing, creating a pumping action.
The heart is made up of four chambers: two atria (singular: atrium) and two ventricles. The atria receive blood from the veins, while the ventricles pump the blood out of the heart. Deoxygenated blood, which has low oxygen levels and high carbon dioxide levels, enters the right atrium from the body through the superior and inferior vena cava.
The right atrium then contracts, pushing the blood into the right ventricle. From there, it is pumped to the lungs to get oxygenated. In the lungs, oxygen is added to the blood while carbon dioxide is removed. Oxygenated blood returns to the heart, specifically to the left atrium, through the pulmonary veins.
The left atrium contracts, pushing the blood into the left ventricle. The left ventricle, being the strongest chamber, pumps the oxygenated blood out of the heart and into the arteries that supply the rest of the body.
So, the heart does not produce red blood cells or receive blood from the kidneys. Its primary job is to pump oxygenated blood to the lungs for oxygenation and then pump the oxygen-rich blood to the rest of the body.
Pergunta 15 Relatório
Which of the following is a male reproductive organ in humans?
Detalhes da Resposta
The male reproductive organ in humans is the Testis.
The testis is responsible for producing sperm, which are the male reproductive cells. These sperms are needed for the process of fertilization, which occurs when a sperm cell fuses with an egg cell to form a new individual.
The testis also produces hormones, primarily testosterone. This hormone is responsible for the development and maintenance of male secondary sexual characteristics, such as facial hair, deepening of the voice, and muscle growth. The testis is located outside the body within a sac called the scrotum.
This is because sperm production occurs at a temperature slightly lower than the body temperature. The testis contains tiny coiled tubes called seminiferous tubules, where the sperm are produced. These sperm cells then mature and are stored in a structure called the epididymis until ejaculation.
In summary, the testis is the male reproductive organ responsible for producing sperm and testosterone, which are vital for reproduction and the development of male sexual characteristics.
Pergunta 16 Relatório
Which of the following is a characteristic of cells related to irritability?
Detalhes da Resposta
A characteristic of cells related to irritability is the ability to respond to stimuli.
This means that cells can detect changes in their environment and react accordingly. Cells have specialized structures called receptors that can detect different types of stimuli such as light, temperature, chemicals, or pressure.
When a stimulus is detected, the cell can initiate a series of events to respond to it. This response can involve various cellular processes such as changing the cell's shape, releasing chemicals, or activating specific genes to produce proteins. For example, when your skin cells are exposed to heat, the receptors in those cells detect the change in temperature.
In response, the cells generate signals that travel to the brain, allowing you to feel the heat and take appropriate action like moving your hand away from the source of heat.
In summary, the ability to respond to stimuli is an important characteristic of cells related to irritability because it allows them to interact with their surroundings and adapt to changes in their environment.
Pergunta 17 Relatório
Which of the following traits is not visible in a person with Down syndrome?
Detalhes da Resposta
A person with Down syndrome may exhibit certain visible traits due to the presence of an extra copy of chromosome 21. However, one of the traits that is not visible in a person with Down syndrome is high muscle tone.
Down syndrome is a genetic condition that occurs when there is an extra copy of chromosome 21. This extra genetic material can cause various physical and cognitive characteristics.
Some of the visible traits commonly associated with Down syndrome include a short neck, small stature, and slant eyes. These features can be present in individuals with Down syndrome, although the severity and extent can vary.
However, high muscle tone is not typically observed in people with Down syndrome. On the contrary, individuals with Down syndrome often have low muscle tone, or hypotonia. This means their muscles are usually less toned or firm than those of individuals without Down syndrome.
It is important to note that while these traits may be common in individuals with Down syndrome, each person is unique and will demonstrate a range of characteristics. It is always beneficial to approach individuals with Down syndrome with respect, understanding, and inclusiveness.
Pergunta 18 Relatório
Which of the following is NOT a part of the alimentary canal?
Detalhes da Resposta
The liver is NOT a part of the alimentary canal. The alimentary canal, also known as the digestive tract, is a long tube that starts from the mouth and ends at the anus. It is responsible for the process of digestion and absorption of nutrients from the food we eat.
The oesophagus is a muscular tube that connects the mouth to the stomach. It allows food to pass from the mouth to the stomach by a process called swallowing.
The small intestine is the longest part of the digestive tract, where most of the digestion and absorption of nutrients take place. It receives the partially digested food from the stomach and breaks it down further with the help of enzymes, before absorbing the nutrients into the bloodstream.
The large intestine is the final part of the digestive system. It is responsible for absorbing water and electrolytes from the remaining indigestible food matter, and forming solid waste (feces) that is expelled from the body. However, the liver is not a part of the alimentary canal. It is an important organ located in the upper right side of the abdomen.
The liver has numerous functions in the body, including production of bile, which helps in the digestion and absorption of fats. While the liver plays a crucial role in digestion, it is not a structural part of the alimentary canal itself.
In summary, the liver is NOT a part of the alimentary canal. The oesophagus, small intestine, and large intestine are all parts of the alimentary canal responsible for the digestion and absorption of nutrients.
Pergunta 19 Relatório
Viviparity refers to the reproductive strategy in which
Detalhes da Resposta
Viviparity refers to the reproductive strategy in which offspring develop and are nourished inside the female's body. This means that instead of laying eggs externally, like in other reproductive strategies, the female's body provides a protected environment for the embryo to develop and receive nutrients.
Pergunta 20 Relatório
Which of the following blood vessels carries oxygenated blood away from the heart?
Detalhes da Resposta
The blood vessel that carries oxygenated blood away from the heart is called an **artery**. Arteries are like highways that transport blood from the heart to different parts of the body. They have thick and elastic walls to handle the pressure exerted by the pumping heart. When blood leaves the heart, it is rich in oxygen and nutrients, which it carries to the body's tissues for them to function properly. Oxygen is crucial for various bodily functions, such as energy production. Therefore, it is important that the oxygenated blood reaches all parts of the body. Arteries have a bright red color because of the oxygen-rich blood they carry. As the blood travels through the arteries, it branches out into smaller vessels called arterioles, which further divide into tiny blood vessels known as capillaries. Capillaries are very thin and narrow, allowing them to reach almost every cell in the body. Once the oxygen from the blood is delivered to the body's tissues through the capillaries, the deoxygenated blood containing waste products, such as carbon dioxide, is collected by tiny veins called venules. Venules join together to form larger veins, which carry the deoxygenated blood back to the heart. To summarize, arteries carry oxygenated blood away from the heart to the body's tissues, while veins carry deoxygenated blood back to the heart. Arteries are like highways that deliver the necessary oxygen and nutrients to keep our bodies functioning properly.
Pergunta 21 Relatório
What is autotrophic nutrition?
Detalhes da Resposta
Autotrophic nutrition refers to the process in which organisms produce their own food using energy from the sun or inorganic substances.
This means that they can make their own food without relying on other organisms.
Autotrophic comes from the Greek words "auto" meaning self and "trophic" meaning nourishment. So, autotrophic organisms are able to nourish themselves. Plants are the most common examples of autotrophs. They have a special pigment called chlorophyll in their leaves that helps them capture sunlight. This sunlight energy is used to convert water and carbon dioxide into glucose (a type of sugar), through a process called photosynthesis. Glucose is their main source of energy. Autotrophs can also be found in other forms of life, such as certain bacteria and algae.
These organisms are able to make their own food using alternative methods, such as obtaining energy from inorganic substances like sulfur or iron.
In summary, autotrophic nutrition is a process where organisms are able to produce their own food using either energy from the sun or inorganic substances. This ability to make their own food sets autotrophs apart from organisms that rely on other organisms for their food.
Pergunta 22 Relatório
What is the tissue responsible for transporting water and minerals from the roots to the rest of the plant?
Detalhes da Resposta
The tissue responsible for transporting water and minerals from the roots to the rest of the plant is called the **xylem**. Xylem is a specialized plant tissue that is found in the stems and roots of plants. Its main function is to transport water, dissolved nutrients, and minerals from the roots, where they are absorbed, to the rest of the plant. The xylem is composed of several types of cells, including vessel elements and tracheids, which are long, tube-like structures. These cells are arranged end-to-end, forming a continuous pathway for water and minerals to flow through the plant. The movement of water and minerals in the xylem is driven by a process called transpiration. Transpiration occurs when water evaporates from the leaves of the plant through tiny pores called stomata. This creates a slight suction force, which pulls water up from the roots and through the xylem vessels. The xylem vessels are reinforced with a substance called lignin, which helps to provide support and prevent collapse. This allows the xylem to transport water and minerals against gravity, from the roots all the way up to the furthest leaves and branches of the plant. In summary, the xylem is the tissue responsible for transporting water and minerals from the roots to the rest of the plant. It uses specialized cells and the process of transpiration to create a continuous pathway for the movement of water and minerals throughout the plant.
Pergunta 23 Relatório
Which of the following statements is true regarding the urinary tubule in the excretory system?
Detalhes da Resposta
The urinary tubule, a part of the nephron in the kidney, is indeed responsible for the production of urine. It does this by reabsorbing useful substances from the filtrate, such as glucose and ions, and secreting waste products into it. The modified filtrate, now called urine, is then passed on to the bladder for storage and eventual excretion.
Pergunta 24 Relatório
Which of the following is a method of asexual reproduction in plants?
Detalhes da Resposta
Vegetative propagation is a method of asexual reproduction in plants. It involves the production of new plants from vegetative parts of an existing plant, such as leaves, stems, or roots. In this process, specialized cells present in these vegetative parts undergo cell division and differentiation to form new plant structures.
These structures can develop into independent, full-grown plants that are genetically identical to the parent plant. Vegetative propagation occurs in various ways:
1. Stem cuttings: A portion of a stem (with leaf nodes) is cut from a parent plant and placed in a suitable medium, where it develops roots and grows into a new plant.
2. Root cuttings: Portions of a root are cut and planted, and they produce new shoots and roots, forming a new plant.
3. Leaf cuttings: Leaves are detached from a parent plant, and specific parts of the leaf develop into roots, stems, and eventually, new plants.
4. Suckers and runners: Some plants produce horizontal stems called runners or suckers that grow from the base of the parent plant. These stems develop roots and give rise to new plants.
This method of asexual reproduction is advantageous because it allows plants to produce offspring quickly without relying on pollination or fertilization. It also ensures that the offspring are genetically identical to the parent, maintaining desirable traits and characteristics.
In summary, vegetative propagation is a form of asexual reproduction in plants where new plants are produced from vegetative parts of an existing plant, such as stems, roots, or leaves. It helps plants multiply quickly and maintain genetic uniformity.
Pergunta 25 Relatório
Which of the following processes is involved in the reproduction of developing organisms?
Detalhes da Resposta
Reproduction in developing organisms involves the process of **fertilization**. Fertilization is the fusion of male and female gametes to form a zygote, which later develops into a new organism. During fertilization, a male gamete (sperm) and a female gamete (egg) combine to form a single cell called a zygote. This process usually occurs through sexual reproduction, where the male gametes are transferred to the female reproductive system, enabling the fusion of gametes. Fertilization is a crucial step in the reproductive cycle as it brings together the genetic material from both parents, contributing to the genetic diversity of the offspring. The zygote formed by fertilization undergoes cell division and differentiation, eventually developing into a new organism. Budding is a type of asexual reproduction where a new organism develops from an outgrowth or bud on the parent organism. This process involves the formation of a clone, as the offspring is genetically identical to the parent. Germination, on the other hand, is the process by which a seed develops into a new plant. It occurs in plant reproduction but is not directly involved in the reproduction of developing organisms. Pollination is an essential step in the sexual reproduction of flowering plants. It involves the transfer of pollen grains from the male part (anther) of a flower to the female part (stigma) of another flower, allowing fertilization to occur. While pollination is involved in the reproductive process of plants, it is not directly related to the reproduction of developing organisms. Therefore, out of the given options, the process directly involved in the reproduction of developing organisms is **fertilization**.
Pergunta 26 Relatório
Which processes are involved in nutrient cycling in a functioning ecosystem?
Detalhes da Resposta
Nutrient cycling is a vital process in a functioning ecosystem because it ensures that nutrients, such as carbon, nitrogen, and phosphorus, are continuously recycled and available for organisms to use. There are several processes involved in nutrient cycling: 1. Decomposition: When plants and animals die, their organic matter is broken down by decomposers like bacteria and fungi. These decomposers release nutrients back into the soil or water as they break down the organic matter. This process is called decomposition. 2. Nitrogen fixation: Nitrogen is an essential nutrient for plants, but most plants cannot use nitrogen in its atmospheric form. Nitrogen fixation is the process by which certain bacteria convert atmospheric nitrogen into a form that plants can absorb and use. This conversion makes nitrogen available in the ecosystem. 3. Denitrification: Denitrification is the opposite of nitrogen fixation. Some bacteria convert nitrogen compounds back into atmospheric nitrogen, releasing it into the air. This process helps to maintain a balance of nitrogen in the ecosystem. 4. Ammonification: Ammonification is the conversion of organic nitrogen compounds into ammonia by bacteria and fungi. This ammonia can then be converted into another form, such as nitrate, through nitrification. 5. Respiration: Respiration is the process by which organisms, including plants and animals, release carbon dioxide into the atmosphere as a byproduct of cellular respiration. This carbon dioxide is taken up by plants during photosynthesis. 6. Photosynthesis: Photosynthesis is the process by which plants use sunlight, carbon dioxide, and water to produce glucose (a form of stored energy) and oxygen. This process is essential for capturing energy from the sun and producing food for other organisms. 7. Transpiration: Transpiration is the process by which plants release water vapor into the atmosphere through their leaves. This process helps to maintain the water cycle and influences the distribution of water in the ecosystem. In summary, nutrient cycling involves processes such as decomposition, nitrogen fixation, denitrification, ammonification, respiration, photosynthesis, and transpiration. These processes work together to ensure that nutrients are continuously recycled and available for organisms in a functioning ecosystem.
Pergunta 27 Relatório
The alternate form of a gene is
Detalhes da Resposta
The alternate form of a gene is called an allele. An allele is a specific version or variant of a gene that codes for a particular trait or characteristic. Genes are sections of DNA that contain instructions for building and function of our bodies. They determine things like our eye color, hair texture, and the ability to taste certain flavors. Each gene can have different forms or variations, known as alleles. These alleles can be slightly different in their DNA sequence, resulting in different traits or characteristics being expressed. For example, the gene for eye color can have alleles for blue, brown, or green eyes. When a person inherits two different alleles of a gene, one from each parent, they are said to be heterozygous for that gene. In this case, one allele may be dominant, which means its trait will be expressed, while the other allele may be recessive, which means its trait will only be expressed if the dominant allele is not present. The way in which alleles interact with each other determines the inheritance patterns and the traits we observe. It is important to note that alleles can be dominant or recessive depending on the trait being considered. So, it is not accurate to say that alleles themselves are dominant or recessive, but rather how they interact with each other in the context of a specific gene.
Pergunta 28 Relatório
Which of the following is the correct classification of carbohydrates?
Detalhes da Resposta
Carbohydrates are classified as macronutrients. Macronutrients are the nutrients that our bodies need in large amounts to provide energy and support various functions.
This classification is correct for carbohydrates because they are a primary source of energy for our bodies. Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen atoms. They are found in a variety of foods such as grains, fruits, vegetables, and dairy products.
Carbohydrates can be further categorized into three types: sugars, starches, and fibers. Sugars are simple carbohydrates that are quickly broken down by the body into glucose, which is used for immediate energy.
Examples of foods high in sugar include table sugar, honey, and fruits. Starches are complex carbohydrates made up of many sugar molecules linked together. They are found in foods like grains, potatoes, and legumes.
Starches take longer to digest and provide a more sustained release of energy compared to sugars. Fiber is also a complex carbohydrate that cannot be fully digested by the body. It passes through the digestive system largely intact and provides important health benefits such as promoting regular bowel movements and supporting gut health.
Fiber is found in foods like whole grains, fruits, vegetables, and legumes. In summary, carbohydrates are classified as macronutrients because they provide our bodies with energy.
They can be classified into sugars, starches, and fibers, each with its own role in our diet.
Pergunta 29 Relatório
Which of the following statements best describes the role of competition in the process of adaptation?
Detalhes da Resposta
The statement that best describes the role of competition in the process of adaptation is: Competition leads to the selection of individuals with favorable traits for survival and reproduction.
Competition refers to the struggle among individuals for limited resources, such as food, territory, mates, or other necessities for survival. In a population with limited resources, not all individuals can have access to them.
This competition creates a selective pressure which drives the process of adaptation. Adaptation is the process by which individuals become better suited to their environment over time.
Through competition, individuals with advantageous traits, which may include physical characteristics or behaviors, have a higher chance of surviving and reproducing successfully. This is because these individuals are better able to acquire the limited resources compared to those who do not possess these traits.
For example, in a population of birds, competition for food may be fierce. Birds with longer beaks may have an advantage in reaching and eating certain types of food that are otherwise inaccessible to birds with shorter beaks.
Over time, the birds with longer beaks are more likely to survive and pass on their longer beak trait to future generations. Therefore, competition plays a crucial role in the process of adaptation by selecting individuals with favorable traits, enabling them to survive, reproduce, and pass on those traits to future generations.
Pergunta 30 Relatório
Which of the following factors primarily affects the distribution of organisms in an ecosystem
Detalhes da Resposta
The factor that primarily affects the distribution of organisms in an ecosystem is **temperature**. Temperature plays a crucial role in determining where different organisms can survive and thrive. Organisms have specific temperature ranges called their "optimal temperature range", within which they can function and grow most effectively. This range varies for different species. Some organisms, such as tropical plants and animals, thrive in hotter temperatures, while others, like polar bears and Arctic plants, are adapted to colder temperatures. Temperature affects the distribution of organisms in several ways. First, it determines the availability of water. Warmer temperatures lead to evaporation and increased water vapor in the air, which can result in areas with high humidity. This higher humidity may support different types of organisms compared to areas with lower humidity. Second, temperature affects the metabolism and physiological processes of organisms. Higher temperatures generally speed up biological processes, while lower temperatures slow them down. As a result, organisms have specific temperature thresholds beyond which they struggle to survive. For example, if the temperature becomes too hot, certain plants may wilt or die, while cold-blooded animals like reptiles may become sluggish or unable to move. Third, temperature influences the growth and reproduction of organisms. Some plants require specific temperature conditions to flower and produce fruit, while animals may have specific temperature requirements for breeding and reproduction. Lastly, temperature also affects the availability of resources for organisms. Different temperatures may lead to variations in the abundance and distribution of food sources, as well as availability of shelter and other resources necessary for survival. In summary, temperature is the primary factor that affects the distribution of organisms in an ecosystem. It determines the availability of water, influences biological processes and metabolism, affects growth and reproduction, and impacts resource availability.
Pergunta 31 Relatório
Which of the following best describes a natural habitat in ecology?
Detalhes da Resposta
A natural habitat in ecology refers to an **area where organisms naturally live and interact with their surroundings**. It is a place where various plants, animals, and other organisms coexist and depend on each other for survival. In a natural habitat, organisms have access to the necessary resources, such as food, water, and shelter, that enable them to thrive and reproduce. It is important to note that natural habitats can vary widely, ranging from forests and grasslands to deserts and oceans. They can be found in different parts of the world, each supporting a unique set of species that are adapted to their specific environment. The diversity and complexity of interactions within a natural habitat contribute to the overall resilience and balance of the ecosystem.
Pergunta 32 Relatório
Which of the following is an example of conserving resources in an ecosystem
Detalhes da Resposta
An example of conserving resources in an ecosystem is implementing sustainable fishing practices.
Sustainable fishing practices involve managing the fishing activities in a way that ensures the long-term health and productivity of the fish populations, as well as the surrounding ecosystem. By implementing sustainable fishing practices, fishermen take measures to prevent overfishing and reduce bycatch (unwanted or unintentionally caught species).
They also consider the reproductive cycle of the fish species and set limits on the number and size of fish that can be caught. This helps to maintain a healthy balance in the ecosystem by allowing fish populations to reproduce and regenerate.
It also avoids depleting the fish populations, which can have negative impacts on other organisms that depend on the fish for survival, as well as the livelihoods of fishermen. Additionally, sustainable fishing practices may involve using more selective fishing gear, such as traps or hooks, which can reduce damage to the surrounding habitat compared to destructive fishing methods.
Overall, sustainable fishing practices aim to conserve resources in an ecosystem by ensuring a sustainable and balanced relationship between human activities and the natural environment.
Pergunta 33 Relatório
Which of the following is an example of conserving resources in an ecosystem?
Detalhes da Resposta
Implementing sustainable fishing practices is an example of conserving resources in an ecosystem.
When we practice sustainable fishing, we are taking steps to ensure that fish populations can replenish and continue to thrive in their natural habitats.
This involves using fishing methods that minimize harm to the ecosystem, such as using selective fishing gear to avoid catching non-target species and setting catch limits to prevent overfishing. Sustainable fishing also includes protecting important fish habitats, like coral reefs and seagrass beds, which serve as breeding and nursery grounds for many species.
By preserving these habitats, we allow fish populations to grow and maintain their natural balance within the ecosystem. Conserving resources in an ecosystem is important because it helps maintain biodiversity, ensures the long-term availability of valuable resources, and supports the overall health and stability of the ecosystem.
By practicing sustainable fishing, we are not only preserving fish populations, but also safeguarding the livelihoods of communities that depend on fishing for their food and income. In contrast, the other options listed do not contribute to resource conservation in an ecosystem.
The excessive use of chemical fertilizers in agriculture can lead to water pollution and harm the soil's natural fertility. Introducing invasive species can disrupt the balance of an ecosystem by outcompeting native species and causing harm to the environment. Cutting down trees for timber production can lead to deforestation and the loss of habitat for many plants and animals.
Overall, implementing sustainable fishing practices is a responsible and effective way to conserve resources in an ecosystem, ensuring the continued health and sustainability of both marine life and the human communities that rely on it.
Pergunta 34 Relatório
Which of the following is an example of a behavioral adaptation for survival in animals?
Detalhes da Resposta
Migration is an example of a behavioral adaptation for survival in animals.
Migration is the regular movement of animals from one place to another, usually in search of better resources or favorable conditions. It is a behavior that helps animals survive by allowing them to find food, escape harsh weather conditions, or reproduce successfully.
During migration, animals travel long distances, sometimes across continents or even oceans, to reach their desired destination. They may travel in groups or flocks, following established routes or using environmental cues such as the position of the sun or Earth's magnetic field.
Some well-known examples of migrating animals include birds, butterflies, whales, and wildebeests. Migration is an effective strategy for survival because it helps animals ensure their survival by accessing resources that may be unavailable in their current location.
By moving to areas with more favorable conditions, such as areas with abundant food or suitable breeding grounds, animals increase their chances of survival and reproduction.
In summary, migration is a behavioral adaptation for survival in animals because it allows them to find better resources and escape unfavorable conditions, ultimately increasing their chances of survival and successful reproduction.
Pergunta 35 Relatório
Which gland is responsible for producing the hormone insulin?
Detalhes da Resposta
The gland responsible for producing the hormone insulin is the pancreas.
The pancreas is a gland located in your abdomen, behind your stomach. It has two main functions: producing digestive enzymes to help break down food and producing hormones, including insulin.
Insulin is a very important hormone that plays a crucial role in regulating blood sugar levels. When we eat, our body breaks down carbohydrates into glucose, which is a form of sugar that our cells use for energy. Insulin helps regulate how much glucose is absorbed by our cells from the bloodstream. When you eat a meal, your pancreas detects the increase in blood sugar levels and releases insulin into the bloodstream.
The insulin acts like a key, allowing glucose to enter the cells and be used as energy. This helps lower the amount of glucose in the bloodstream and keeps it within a healthy range.
In summary, the pancreas is responsible for producing the hormone insulin, which helps regulate blood sugar levels by allowing glucose to enter the cells.
Pergunta 36 Relatório
Which of the following statements is true regarding sexual reproduction in organisms?
Detalhes da Resposta
Sexual reproduction in organisms involves the fusion of gametes from two parents, resulting in offspring with genetic variation. This means that the offspring inherit traits from both parents, leading to a combination of their genetic material. This process starts with the production of specialized cells called gametes by each parent. These gametes, such as sperms and eggs, contain half the number of chromosomes as other cells in the body. When two gametes fuse during sexual reproduction, they form a new cell called a zygote. The zygote then develops into an offspring with a unique combination of genes from both parents. This genetic variation is beneficial to the survival of a species. It allows for adaptation to changing environments. For example, if one parent has a genetic trait that provides resistance to a certain disease, there is a chance that the offspring may inherit that trait and be better equipped to survive if they encounter the same disease. In contrast, asexual reproduction involves the production of offspring through a single parent, resulting in genetically identical offspring. This can occur through processes such as budding, fragmentation, or binary fission. In asexual reproduction, there is no genetic variation, as the offspring are essentially clones of the parent. So, the true statement regarding sexual reproduction in organisms is that it involves the fusion of gametes from two parents, resulting in offspring with genetic variation.
Pergunta 37 Relatório
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called:
Detalhes da Resposta
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**. Let's break it down to understand why this is the correct answer. Genes are the units of heredity that determine traits in living organisms. Each gene exists in different forms called alleles. In monohybrid inheritance, we focus on the inheritance of a single gene from one generation to the next. When an organism has two copies of the same allele for a gene, it is called **homozygous** for that gene. Homozygous individuals can have two copies of the dominant allele (DD) or two copies of the recessive allele (dd). On the other hand, if an organism carries two different alleles for a gene, it is called **heterozygous**. Heterozygous individuals have one copy of the dominant allele and one copy of the recessive allele (Dd). In this case, the dominant allele often determines the visible trait, while the recessive allele is hidden or masked. To summarize, in monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**.
Pergunta 38 Relatório
Which of the following statements best describes pollination in plants?
Detalhes da Resposta
Pollination is the process of transferring pollen from the anther to the stigma of a flower.
In simple terms, pollination is like the plant's way of reproduction. It involves the transfer of pollen, which contains the plant's male reproductive cells, from the anther (part of the flower where pollen is produced) to the stigma (part of the flower where pollen needs to land for fertilization).
This transfer can happen in different ways, depending on the plant species. It can be done by wind, insects, birds, or other animals. When pollen reaches the stigma, it can fertilize the female reproductive cells and lead to the formation of seeds and fruits.
To summarize, pollination is the essential step in plant reproduction where pollen is moved from the male part of the flower to the female part, allowing for the production of seeds.
Pergunta 39 Relatório
Which of the following functions is performed by the skin to help maintain homeostasis in the human body?
Detalhes da Resposta
The correct function performed by the skin to help maintain homeostasis in the human body is regulation of body temperature.
The skin plays a crucial role in maintaining a stable internal body temperature, regardless of the external environment. This process is known as thermoregulation. When our body gets too hot, the skin helps to cool it down, and when our body gets too cold, the skin helps to warm it up.
There are two main ways in which the skin helps regulate body temperature:
1. Sweat Glands: The skin contains sweat glands that produce sweat. When the body temperature rises, these sweat glands release sweat onto the surface of the skin. As the sweat evaporates, it takes away heat from the body, cooling it down.
2. Blood Vessels: The skin also has blood vessels near its surface. When the body temperature increases, these blood vessels expand, allowing more blood to flow through them. This increased blood flow helps to dissipate heat from the body. On the other hand, when the body temperature decreases, these blood vessels narrow, reducing the blood flow and conserving heat.
By regulating body temperature, the skin helps to maintain homeostasis, which is the body's ability to maintain a stable and balanced internal environment. This is essential for the proper functioning of various bodily processes and organs.
Pergunta 40 Relatório
Which of the following is a difference between plant and animal cells?
Detalhes da Resposta
One of the main differences between plant and animal cells is that plant cells contain chloroplasts for photosynthesis, while animal cells do not. However, plant cells contain chloroplasts, which are organelles responsible for photosynthesis, enabling plants to convert sunlight into energy-rich molecules. Animal cells lack chloroplasts and obtain energy through other means, such as consuming organic matter.
Gostaria de prosseguir com esta ação?