A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Detalhes da Resposta
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Pergunta 2 Relatório
A parallel plate capacitor separated by an air gap is made of 0.8m2 tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take εo = 8.85 * 10-12 Fm−1
Detalhes da Resposta
To calculate the charge on each plate of a parallel plate capacitor, we can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. The capacitance of a parallel plate capacitor can be calculated using the formula C = εA/d, where C is the capacitance, ε is the permittivity of the medium (in this case, air), A is the area of each plate, and d is the distance between the plates. Given: Area of each plate (A) = 0.8 m^2 Distance between the plates (d) = 20 mm = 0.02 m Permittivity of air (ε) = 8.85 x 10^-12 F/m Using the formula for capacitance, we can calculate C: C = εA/d = (8.85 x 10^-12 F/m)(0.8 m^2)/(0.02 m) = 8.85 x 10^-12 F/m * 40 F = 3.54 x 10^-10 F Now, we can use the formula Q = CV to calculate the charge on each plate: Q = (3.54 x 10^-10 F)(120 V) = 4.25 x 10^-8 C = 42.5 x 10^-9 C = 42.5 nC Therefore, the charge on each plate of the parallel plate capacitor is **42.5 nC**.
Pergunta 3 Relatório
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Detalhes da Resposta
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Pergunta 4 Relatório
Which of the following is a type of incandescent light source?
Detalhes da Resposta
The Tungsten filament lamp is a type of incandescent light source.
An incandescent light source works by using electricity to heat a filament inside the bulb until it becomes so hot that it emits light. In a tungsten filament lamp, the filament is made of tungsten, which is a metal that has a very high melting point. This allows the filament to get extremely hot without melting.
When an electric current passes through the filament, it heats up and starts to glow, producing visible light. The light emitted by a tungsten filament lamp is actually a result of the high temperature, which causes the atoms in the filament to vibrate and release energy in the form of light.
Incandescent light sources like tungsten filament lamps have been widely used for many years because they produce a warm, yellowish light that is similar to natural sunlight. However, they are not very energy-efficient, as a significant amount of the electrical energy is converted into heat rather than light.
In recent years, there has been a shift towards more energy-efficient alternatives like LED lamps and fluorescent lamps. LED lamps use a different mechanism to produce light, using a semiconductor that emits light when electric current passes through it. Fluorescent lamps use a gas-filled tube that emits ultraviolet light when electric current flows through it, and this ultraviolet light is then converted into visible light by a phosphor coating inside the tube.
So, in summary, the tungsten filament lamp is the type of incandescent light source among the options given. It works by heating a tungsten filament to a very high temperature, causing it to emit light. However, it is less energy-efficient compared to LED and fluorescent lamps.
Pergunta 5 Relatório
A piano wire 50 cm long has a total mass of 10 g and its stretched with a tension of 800 N. Find the frequency of the wire when it sounds its third overtone note.
Detalhes da Resposta
T=800N; I=50cm=0.5m,
m=10g=0.01kg
fundamental freq: fo
=?
fo
= 121√Tμ
μ =m1
=0.010.5
⇒ fo
=12×0.5
√8000.02
fo
⇒√ 40,000
⇒1st overtone = 2fo
=2×200 = 400Hz
⇒2nd overtone =3fo
=3×200=600Hz
∴3rd over tone= 4fo
=4×200=800Hz
Pergunta 6 Relatório
What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from −10oC to 10oC ?
[specific latent heat of fusion of ice = 3.34 x 105 Jkg−1, Specific heat capacity of water = 4200 Jkg−1 k−1
Specific heat capacity of ice = 2100 Jkg−1k−1
Pergunta 7 Relatório
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Detalhes da Resposta
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Pergunta 8 Relatório
A metal sphere is placed on an insulating stand. A negatively charged rod is brought close to it. If the sphere is earthed and the rod is taken away, what will be the charge on the sphere?
Detalhes da Resposta
When a negatively charged rod is brought close to a metal sphere, the free electrons in the sphere are repelled from the rod and move to the other end of the sphere. This creates a region of positive charge on the side of the sphere closest to the rod, and a region of negative charge on the opposite side. The process of charge distribution stops when the net force on the free electrons inside the metal is equal to zero.
If the sphere is then earthed, the free electrons will flow from the sphere to the ground, leaving the sphere with a net positive charge.
Pergunta 9 Relatório
A travelling wave of amplitude 0.80 m has a frequency of 16 Hz and a wave speed of 20 ms-1
Calculate the wave number of the wave.
Detalhes da Resposta
The wave number of a wave is defined as the number of wavelengths per unit distance. It represents the spatial frequency of the wave.
In this case, the wave has a frequency of 16 Hz, which means it completes 16 cycles or oscillations per second. Each cycle corresponds to one wavelength.
The wave speed is given as 20 m/s, which is the speed at which the wave propagates through the medium.
To calculate the wave number, we can use the formula:
Wave number (k) = 2? / wavelength (?)
First, we need to find the wavelength of the wave. We can use the formula:
Wave speed (v) = frequency (f) x wavelength (?)
Rewriting the formula, we have:
Wavelength (?) = wave speed (v) / frequency (f)
Substituting the given values, we have:
Wavelength (?) = 20 m/s / 16 Hz
Simplifying the expression, we get:
Wavelength (?) = 1.25 m
Now, we can calculate the wave number using the formula:
Wave number (k) = 2? / wavelength (?)
Substituting the value of the wavelength, we get:
Wave number (k) = 2? / 1.25 m
Simplifying the expression, we get:
Wave number (k) ? 5.03
Therefore, the wave number of the wave is approximately 5.
Pergunta 10 Relatório
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is
Detalhes da Resposta
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is adhesive to water.
Adhesion is the attraction between different substances, in this case, water and wood. Wood is a porous material, meaning it has tiny holes or gaps in its surface. These tiny holes create a large surface area for the water droplet to interact with.
When the water droplet comes into contact with the wood, the adhesive forces between the water molecules and the wood molecules are stronger than the cohesive forces between the water molecules. This causes the water droplet to spread out, trying to maximize its contact with the wood surface.
The spreading out of the water droplet forms a thin layer because the wood surface is not completely smooth. Instead, it has irregularities and imperfections, which allow the water to seep into those gaps and spread out further.
Therefore, when a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer due to the adhesive forces between the water and the wood surface.
Pergunta 11 Relatório
An explosion occurs at an altitude of 312 m above the ground. If the air temperature is -10.00°C, how long does it take the sound to reach the ground?
[velocity of sound at 0 deg = 331 ms-1]
Pergunta 12 Relatório
The terminals of a battery of emf 24.0 V and internal resistance of 1.0 Ω is connected to an external resistor 5.0 Ω. Find the terminal p.d.
Detalhes da Resposta
To find the terminal p.d. (potential difference), we need to consider the concept of voltage in a circuit. Voltage is the amount of electrical energy per unit charge provided by a power source, in this case, the battery.
In this problem, we are given:
EMF (electromotive force) of the battery = 24.0 V
Internal resistance of the battery = 1.0 Ω
External resistor = 5.0 Ω
When the battery is connected to the external resistor, a current will flow in the circuit. This current is determined by Ohm's law, which states that the current flowing in a circuit is directly proportional to the voltage applied and inversely proportional to the resistance:
I = V / R
where:
I is the current flowing in the circuit
V is the voltage applied
R is the resistance of the circuit
In this case, the voltage applied is the emf of the battery, and the resistance is the sum of the internal resistance and the external resistor.
We can calculate the current flowing in the circuit:
I = 24.0V / (1.0Ω + 5.0Ω) = 24.0V / 6.0Ω = 4.0A
Now, the terminal p.d. is the voltage drop across the external resistor. We can calculate it using Ohm's law:
V = I * R
Substituting the values:
V = 4.0A * 5.0Ω = 20.0V
Therefore, the terminal p.d. is 20.0V.
Pergunta 13 Relatório
The property of wave shown in the diagram above is?
Detalhes da Resposta
The property of the wave shown in the diagram is diffraction.
Diffraction is the bending or spreading out of waves as they encounter an obstacle or pass through an opening. It occurs when waves encounter an obstacle that is comparable in size to their wavelength.
In the diagram, you can see that the wave is encountering an opening or a slit, and as a result, it is spreading out or bending around the edges of the opening. This bending or spreading out is characteristic of diffraction.
Diffraction is an important phenomenon in wave behavior and is observed in various situations, such as when sound waves pass through a doorway or when light waves pass through a narrow slit. It helps us understand how waves interact with obstacles and openings in their path.
In summary, the property of the wave shown in the diagram is diffraction, which is the bending or spreading out of waves as they encounter an obstacle or pass through an opening.
Pergunta 14 Relatório
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Pergunta 15 Relatório
The electrolyte used in the Nickel-Iron (NiFe) accumulator is
Detalhes da Resposta
The electrolyte used in the Nickel-Iron (NiFe) accumulator is **potassium hydroxide solution**.
In a Nickel-Iron accumulator, the electrolyte is the substance that allows the flow of electric current between the electrodes. It is essential for the proper functioning of the accumulator.
Potassium hydroxide solution is the ideal electrolyte for the NiFe accumulator due to its properties. It has good electrical conductivity, which means it allows the movement of ions between the positive and negative electrodes, enabling the flow of electrons and facilitating the charging and discharging process.
In addition to good conductivity, potassium hydroxide solution also has other beneficial properties for the NiFe accumulator. It is stable, ensuring a longer lifespan for the accumulator. It is also less prone to self-discharge, meaning the accumulator can retain its charge for a longer period without significant loss.
Therefore, the electrolyte used in the Nickel-Iron (NiFe) accumulator is potassium hydroxide solution.
Pergunta 16 Relatório
A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.
Detalhes da Resposta
To find the tension in the rope, we can first use the formula for centripetal force, which is given by:
F_centripetal = (m * v^2) / r
where: - F_centripetal is the centripetal force - m is the mass of the object - v is the velocity of the object - r is the radius of the circular path
In this case, the mass of the object (m) is given as 2 kg and the radius (r) is given as 1.2 m.
Now, to find the velocity (v), we need to convert the given value of 120 rev/min to m/s.
Here's how we can do that:
1. First, convert the revolutions per minute (rev/min) to revolutions per second (rev/s) by dividing by 60 (since there are 60 seconds in a minute):
120 rev/min = 120/60 rev/s = 2 rev/s
2. Next, we need to convert the revolutions per second to the linear velocity in meters per second (m/s). To do this, we need to find the circumference of the circular path.
The circumference of a circle is given by the formula:
C = 2πr where r is the radius of the circular path.
Substituting the value of the radius (r = 1.2 m) into the formula, we have:
C = 2π * 1.2 = 2.4π Now, to find the linear velocity (v), we can multiply the circumference (C) by the number of revolutions per second (2 rev/s):
v = C * rev/s = 2.4π * 2 = 4.8π m/s
Now that we have the values of m (2 kg) and v (4.8π m/s), we can substitute them into the centripetal force formula to find the tension in the rope:
F_centripetal = (m * v^2) / r = (2 * (4.8π)^2) / 1.2
Simplifying further:
F_centripetal = (2 * 23.04π^2) / 1.2
F_centripetal = 38.4π^2
Finally, to get a numerical value for the tension in the rope, we can approximate the value of π to 3.14 and calculate the centripetal force:
F_centripetal ≈ 38.4 * 3.14^2 ≈ 379 N
Therefore, the tension in the rope is approximately 379 N.
Therefore, the correct answer is 379.
Pergunta 17 Relatório
A beam of light traveling in water is incident on a glass which is immersed in the water. The incident beam makes an angle of 40o
with the normal. Calculate the angle of refraction in the glass.
[Refractive index of water = 1.33, Refractive index of glass = 1.5]
Pergunta 18 Relatório
An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is
Pergunta 19 Relatório
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Detalhes da Resposta
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Pergunta 20 Relatório
Pergunta 21 Relatório
An open-tube mercury manometer is used to measure the pressure in a gas tank. When the atmospheric pressure is 101,325 Pa
, what is the absolute pressure in Pa
in the tank if the height of the mercury in the open tube is 25 cm higher
Pergunta 22 Relatório
A 35 kΩ is connected in series with a resistance of 40 kΩ. What resistance R must be connected in parallel with the combination so that the equivalent resistance is equal to 25 kΩ?
Detalhes da Resposta
For the combination in series;
⇒R1 = 35kΩ + 40kΩ = 75kΩ
R is combined with 75kΩ in parallel to give 25kΩ
= 1Req
= 1R
+ 1R
= 125
= 1R
+ 175
= 125
- 175
+ 1R
= 3−175
= 1R
= 275
= 1R
= 752
= R
; R = 37.5k Ω
Pergunta 23 Relatório
A positively charged particle is placed near a negatively charged particle. What is the direction of the electric force between the two particles?
Detalhes da Resposta
The correct answer is The electric force is directed from the positive particle to the negative particle.
When a positively charged particle is placed near a negatively charged particle, they exert an attractive force on each other. This force is called the electric force.
According to Coulomb's Law, the electric force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the positively charged particle has a positive charge and the negatively charged particle has a negative charge. Since opposite charges attract each other, the electric force between them is attractive.
Therefore, the electric force is directed from the positive particle to the negative particle.
Pergunta 24 Relatório
A step-down transformer is used on a 2.2 kV line to deliver 110 V. How many turns are on the primary windings if the secondary has 25 turns?
Detalhes da Resposta
To determine the number of turns on the primary winding of a step-down transformer, we need to understand how a transformer works and how the voltage is transformed from the primary to the secondary winding.
A transformer operates on the principle of electromagnetic induction. When an alternating current flows through the primary winding, it creates a changing magnetic field that induces a voltage in the secondary winding.
The voltage ratio between the primary and secondary windings is determined by the ratio of the number of turns in each winding. This means that if we decrease the number of turns in the secondary winding compared to the primary winding, we can reduce the voltage output.
In this case, we are given that the secondary winding has 25 turns and we want to deliver 110 V. The primary winding has a higher voltage, which is 2.2 kV (kilovolts) or 2200 V.
To determine the number of turns on the primary winding, we can set up a simple equation using the voltage ratios:
Primary voltage / Secondary voltage = Primary winding turns / Secondary winding turns
Plugging in the values we have:
2200 V / 110 V = Primary winding turns / 25 turns
Simplifying the equation:
20 = Primary winding turns / 25
To solve for the number of turns on the primary winding, we can cross multiply:
20 x 25 = Primary winding turns
Therefore, the number of turns on the primary winding is 500.
So, the correct answer is 500.
Pergunta 25 Relatório
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Detalhes da Resposta
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Pergunta 26 Relatório
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Detalhes da Resposta
Pergunta 27 Relatório
The number of holes in an intrinsic semiconductor
Detalhes da Resposta
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Pergunta 28 Relatório
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Detalhes da Resposta
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Pergunta 29 Relatório
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Detalhes da Resposta
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Pergunta 30 Relatório
Calculate the absolute pressure at the bottom of a lake at a depth of 32.8 m. Assume the density of the water is 1 x 10-3 kgm-3 and the air above is at a pressure of 101.3 kPa.
[Take g = 9.8 ms-2]
Pergunta 31 Relatório
The near point of a patient's eye is 50.0 cm. What power (in diopters) must a corrective lens have to enable the eye to see clearly an object 25.0 cm away?
Pergunta 32 Relatório
Three forces with magnitudes 16 N, 12 N and 21 N are shown in the diagram below. Determine the magnitude of their resultant force and angle with the x-axis
Detalhes da Resposta
Pergunta 33 Relatório
Name the type of equilibrium for each position of the ball
Detalhes da Resposta
To determine the type of equilibrium for each position of the ball, we need to understand what each type of equilibrium means. 1. **Unstable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position. In other words, the system is "unstable" and will not return to its original position on its own. 2. **Neutral equilibrium**: This occurs when a small disturbance or change in the system does not cause the object to move away from its equilibrium position. The system remains in its new position without any tendency to return to its original position. 3. **Stable equilibrium**: This occurs when a small disturbance or change in the system causes the object to move away from its equilibrium position, but the system has a tendency to return to its original position on its own. Now, let's analyze each position of the ball: A - **Unstable equilibrium**: Suppose the ball is placed at position A. If the ball is slightly disturbed or moved from this position, it will roll away further from its original position and won't come back on its own. Hence, position A is an unstable equilibrium. B - **Stable equilibrium**: Suppose the ball is placed at position B. If the ball is slightly disturbed or moved from this position, it will oscillate back and forth but eventually come back to its original position. This indicates that position B is a stable equilibrium. C - **Neutral equilibrium**: Suppose the ball is placed at position C. If the ball is slightly disturbed or moved from this position, it will stay at the new position without any tendency to return to its original position. This identifies position C as a neutral equilibrium. Based on the explanations above, the correct answer is: A - unstable, B - stable, C - neutral.
Pergunta 34 Relatório
Light of wavelength 589 nm in vacuum passes through a piece of fused quartz of index of refraction n = 1.458. What is the frequency of the light in fused quartz?
[Speed of light c = 3 *10^8ms-1]
Pergunta 35 Relatório
Which of the following is NOT an example of elementary modern physics?
Detalhes da Resposta
Classical mechanics is a branch of physics that deals with the motion of macroscopic objects. It is based on the principles of Newton's laws of motion and is not considered to be part of elementary modern physics.
The other three options, quantum mechanics, special relativity, and nuclear physics, are all considered to be part of elementary modern physics because they deal with the behavior of matter and energy at the atomic and subatomic levels.
Pergunta 36 Relatório
Which of the following is NOT a limitation of experimental measurements?
Detalhes da Resposta
Instrument resolution is not a limitation of experimental measurements. It is the smallest change in a measured quantity that can be detected by an instrument. While instrument resolution limits the accuracy of a measurement, it is not a limitation of experimental measurements itself.
Pergunta 37 Relatório
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. If the frequency of the light is increased, what happens to the stopping potential?
Detalhes da Resposta
When light of a certain frequency is incident on a metal surface, no photoelectrons are emitted. This is because the energy of the photons in the light is not enough to overcome the work function of the metal, which is the minimum amount of energy required to remove an electron from the metal surface.
If the frequency of the light is increased, it means that the energy of the photons increases. This increase in energy means that there is now enough energy to overcome the work function of the metal. As a result, photoelectrons are now emitted from the metal surface.
Now, let's consider the stopping potential. The stopping potential is the minimum potential difference that needs to be applied across a pair of electrodes in order to stop the flow of photoelectrons from reaching the other electrode.
When the frequency of the light is increased, the energy of the photons also increases. This means that the photoelectrons have more kinetic energy when they are emitted from the metal surface. As a result, a higher stopping potential is required to stop the more energetic photoelectrons from reaching the other electrode.
Therefore, the stopping potential increases when the frequency of the light is increased.
Pergunta 38 Relatório
The sensitivity of a thermometer is
Detalhes da Resposta
The sensitivity of a thermometer refers to the smallest temperature change that it can detect or measure. In other words, it measures how fine or precise the thermometer is in detecting changes in temperature. A thermometer with high sensitivity is able to detect even small changes in temperature, while a thermometer with low sensitivity may only detect larger temperature fluctuations.
Therefore, in the given options, the statement "the smallest temperature change that can be detected or measured" accurately describes the sensitivity of a thermometer.
Pergunta 39 Relatório
In the diagram above, if the south poles of two magnets stroke a steel bar, the polarities at X and Y will respectively be
Detalhes da Resposta
The polarities at X and Y would be north and north.
Pergunta 40 Relatório
Which of the following materials is a good insulator?
Detalhes da Resposta
A good insulator is a material that does not easily allow heat or electricity to pass through it. It acts as a barrier, preventing the flow of heat or electricity. Out of the given options, rubber is a good insulator.
Rubber is made up of long chains of molecules that are closely packed together. These chains do not allow the easy movement of heat or electricity. This means that when heat or electricity tries to pass through rubber, it encounters resistance, making it difficult for it to flow.
In contrast, materials like silver, water, and copper are good conductors rather than insulators.
Silver is an excellent conductor of electricity and heat because its atoms have loosely bound electrons that are free to move. This allows for the easy transfer of heat or electricity throughout the material.
Water is also a good conductor of both heat and electricity. It contains charged particles called ions that can carry electric current. Additionally, water molecules are able to transfer heat through convection.
Copper is widely used in electrical wiring because it is an excellent conductor of electricity. Like silver, its atoms have free electrons that can move easily and transfer electrical energy.
Therefore, rubber is the material that serves as a good insulator, while silver, water, and copper are good conductors of heat and electricity.
Gostaria de prosseguir com esta ação?