A carregar...
Pressione e Mantenha para Arrastar |
|||
Clique aqui para fechar |
Pergunta 1 Relatório
An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is
Pergunta 2 Relatório
Calculate the absolute pressure at the bottom of a lake at a depth of 32.8 m. Assume the density of the water is 1 x 10-3 kgm-3 and the air above is at a pressure of 101.3 kPa.
[Take g = 9.8 ms-2]
Pergunta 3 Relatório
Which of the following statements regarding the application of electrical conduction via gases is/are correct?
Electrical conduction in gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Photocells
(iv) Cathode ray oscilloscope/T.V. tubes
Detalhes da Resposta
Electrical conduction of gas is applied in:
(i) The identification of gases
(ii) Lighting/fluorescent tubes
(iii) Advertising industry/Neon signs
(iv) Cathode ray oscilloscope/T.V. tubes
Pergunta 4 Relatório
The sensitivity of a thermometer is
Detalhes da Resposta
The sensitivity of a thermometer refers to the smallest temperature change that it can detect or measure. In other words, it measures how fine or precise the thermometer is in detecting changes in temperature. A thermometer with high sensitivity is able to detect even small changes in temperature, while a thermometer with low sensitivity may only detect larger temperature fluctuations.
Therefore, in the given options, the statement "the smallest temperature change that can be detected or measured" accurately describes the sensitivity of a thermometer.
Pergunta 5 Relatório
Rainbow formation is as a result of the combination of which of the following phenomena?
(i) Reflection
(ii) Dispersion
(iii) Total internal reflection
(iv) Refraction
Detalhes da Resposta
As light ray enters a drop of water the light is refracted at the surface and at the end of the drop, it is totally internally reflected in which the reflected light returns to the front surface, where it again undergoes refraction as it moves from water to air. The result of this is a dispersed light of colours of different wavelengths.
Pergunta 6 Relatório
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is
Detalhes da Resposta
When a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer because the wood is adhesive to water.
Adhesion is the attraction between different substances, in this case, water and wood. Wood is a porous material, meaning it has tiny holes or gaps in its surface. These tiny holes create a large surface area for the water droplet to interact with.
When the water droplet comes into contact with the wood, the adhesive forces between the water molecules and the wood molecules are stronger than the cohesive forces between the water molecules. This causes the water droplet to spread out, trying to maximize its contact with the wood surface.
The spreading out of the water droplet forms a thin layer because the wood surface is not completely smooth. Instead, it has irregularities and imperfections, which allow the water to seep into those gaps and spread out further.
Therefore, when a water droplet is placed on a freshly cut piece of wood, it spreads out to form a thin layer due to the adhesive forces between the water and the wood surface.
Pergunta 7 Relatório
Which of the following materials is a good insulator?
Detalhes da Resposta
A good insulator is a material that does not easily allow heat or electricity to pass through it. It acts as a barrier, preventing the flow of heat or electricity. Out of the given options, rubber is a good insulator.
Rubber is made up of long chains of molecules that are closely packed together. These chains do not allow the easy movement of heat or electricity. This means that when heat or electricity tries to pass through rubber, it encounters resistance, making it difficult for it to flow.
In contrast, materials like silver, water, and copper are good conductors rather than insulators.
Silver is an excellent conductor of electricity and heat because its atoms have loosely bound electrons that are free to move. This allows for the easy transfer of heat or electricity throughout the material.
Water is also a good conductor of both heat and electricity. It contains charged particles called ions that can carry electric current. Additionally, water molecules are able to transfer heat through convection.
Copper is widely used in electrical wiring because it is an excellent conductor of electricity. Like silver, its atoms have free electrons that can move easily and transfer electrical energy.
Therefore, rubber is the material that serves as a good insulator, while silver, water, and copper are good conductors of heat and electricity.
Pergunta 8 Relatório
An object is placed 35 cm away from a convex mirror with a focal length of magnitude 15 cm. What is the location of the image?
Detalhes da Resposta
Let's understand how a convex mirror forms images. In a convex mirror, the center of curvature and the focal point lie behind the mirror. Convex mirrors always produce virtual, upright, and diminished images.
Here, we are given that the object is placed 35 cm away from the convex mirror and the mirror has a focal length of 15 cm.
To find the location of the image, we can use the mirror formula, which states:
1/f = 1/v - 1/u
Where: - f is the focal length of the mirror, - v is the distance of the image from the mirror (negative for virtual image), - u is the distance of the object from the mirror (negative for real object in front of the mirror).
In this case, f = 15 cm and u = -35 cm (negative because the object is in front of the mirror).
Substituting these values into the formula, we get:
1/15 = 1/v - 1/-35
Simplifying the equation, we get:
1/v = 1/15 + 1/35
To add the fractions, we find the common denominator, which is 105. Then, we have:
1/v = (7 + 3)/105
1/v = 10/105
Simplifying further, we get:
1/v = 2/21
To solve for v, we take the reciprocal on both sides of the equation:
v = 21/2
Therefore, the location of the image is 10.5 cm behind the mirror.
Pergunta 9 Relatório
Which of the following is a type of wave that is both mechanical and longitudinal?
Detalhes da Resposta
A wave that is both mechanical and longitudinal is sound waves.
Sound waves are created by the vibration of an object, such as a speaker, which causes the air particles around it to vibrate. These vibrations then travel through the air in the form of a wave.
Sound waves are classified as mechanical waves because they require a medium, such as air, water, or solid objects, to travel through. Without a medium, sound waves cannot propagate.
Furthermore, sound waves are classified as longitudinal waves because the particles in the medium vibrate parallel to the direction of the wave. This means that as the sound wave travels, the particles in the medium move back and forth in the same direction as the wave itself.
In contrast, water waves and seismic waves are mechanical waves, but they are not longitudinal. Water waves are categorized as transverse waves because the particles in the water move up and down at right angles to the direction of the wave. Seismic waves, which include earthquake waves, can be both transverse and longitudinal, but typically the primary seismic waves are classified as transverse waves.
Lastly, light waves are not mechanical waves but rather electromagnetic waves. They do not require a medium to travel through and can propagate in a vacuum, unlike sound waves.
Pergunta 10 Relatório
The working of the beam balance is based on the principle of
Detalhes da Resposta
The working of the beam balance is based on the principle of moments.
Moments, also known as torques, are a measure of the turning effect of a force. In the case of the beam balance, it is the moments that help determine the equilibrium or balance of the system.
The beam balance consists of a beam or lever that is supported at a pivot point called the fulcrum. On either end of the beam, there are pans where the objects to be weighed are placed.
When objects of different weights are placed on the pans, the beam becomes unbalanced. This causes the beam to tilt towards the side with the heavier object. However, in order to achieve equilibrium or balance, the moments on both sides of the beam must be equal.
The moment of a force is calculated by multiplying the magnitude of the force by the perpendicular distance from the point of rotation (the fulcrum) to the line of action of the force.
By adjusting the position of the counterweights or by moving the objects on the pans, the moment on each side of the beam can be balanced, resulting in the beam becoming level or horizontal. This indicates that the weights on both sides are equal.
Therefore, the beam balance operates on the principle of moments, where the balance is achieved by equalizing the moments on both sides of the fulcrum.
Pergunta 11 Relatório
The half life of a radioactive material is 12 days. Calculate the decay constant.
Detalhes da Resposta
The decay constant of a radioactive material represents the probability that an atom of the material will decay in a unit of time. In this case, we are given the half-life of the material which is the time it takes for half of the radioactive atoms to decay.
The relationship between the decay constant (λ) and the half-life (T½) is given by the formula:
λ = ln(2) / T½
where ln(2) is the natural logarithm of 2.
To find the decay constant, we can plug in the given half-life value into the formula. In this case, the half-life is 12 days.
λ = ln(2) / 12
Using a calculator, we can calculate the value of ln(2) ≈ 0.6931.
λ = 0.6931 / 12 ≈ 0.05775 day^(-1)
Therefore, the decay constant for this radioactive material is approximately 0.05775 day^(-1).
The correct answer is 0.05775 day^(-1).
Pergunta 12 Relatório
Which of the following is NOT an example of elementary modern physics?
Detalhes da Resposta
Classical mechanics is a branch of physics that deals with the motion of macroscopic objects. It is based on the principles of Newton's laws of motion and is not considered to be part of elementary modern physics.
The other three options, quantum mechanics, special relativity, and nuclear physics, are all considered to be part of elementary modern physics because they deal with the behavior of matter and energy at the atomic and subatomic levels.
Pergunta 13 Relatório
A simple pendulum, has a period of 5.77 seconds. When the pendulum is shortened by 3 m, the period is 4.60 seconds. Calculate the new length of the pendulum
Pergunta 14 Relatório
How much work is done against the gravitational force on a 3.0 kg object when it is carried from the ground floor to the roof of a building, a vertical climb of 240 m?
Detalhes da Resposta
To calculate the work done against gravitational force, we can use the formula:
Work = Force x Distance
In this case, the force we are working against is the gravitational force. The gravitational force is the force with which the Earth pulls objects towards its center. The formula for gravitational force is:
Force = Mass x Acceleration due to gravity
The mass of the object is given as 3.0 kg. The acceleration due to gravity on Earth is approximately 9.8 m/s^2.
Now, we need to find the distance the object is being carried, which is 240 m.
Plugging these values into the formulas, we have:
Force = 3.0 kg x 9.8 m/s^2 = 29.4 N
Work = 29.4 N x 240 m
Therefore, the work done against the gravitational force is equal to 29.4 N x 240 m = 7056 J = 7.1 kJ (rounded to one decimal place).
So, the correct answer is 7.2 kJ.
Pergunta 15 Relatório
In an AC circuit, resonance occurs when the impedance of the circuit is:
Detalhes da Resposta
In an AC circuit, resonance occurs when the impedance of the circuit is minimum.
Impedance is the total opposition to the flow of alternating current in a circuit, and it consists of two components: resistance (R) and reactance (X).
Reactance can be further divided into two types: inductive reactance (XL) and capacitive reactance (XC).
At resonance, the inductive reactance and the capacitive reactance are equal in magnitude and opposite in sign. This means that their effects cancel each other out, resulting in a minimum total reactance.
Since impedance is the combination of resistance and reactance, when the reactance is at its minimum, the impedance of the circuit is also at its minimum.
So, in summary, resonance occurs in an AC circuit when the impedance is minimum. At resonance, the inductive reactance and the capacitive reactance cancel each other out, resulting in a minimum total reactance and minimum impedance.
Pergunta 16 Relatório
A lorry accelerates uniformly in a straight line with acceleration of 4ms-1 and covers a distance of 250 m in a time interval of 10 s. How far will it travel in the next 10 s?
Detalhes da Resposta
Pergunta 17 Relatório
Pergunta 18 Relatório
The branch of physics that deals with the motion of objects and the forces acting on them is called:
Detalhes da Resposta
The branch of physics that deals with the motion of objects and the forces acting on them is called mechanics.
Mechanics is the foundation of physics that studies how objects move and interact under the influence of forces. It encompasses both the study of the motion of macroscopic objects, such as cars and planets, and the behavior of microscopic particles, such as atoms and molecules.
Mechanics is divided into two main branches:
Therefore, when referring to the branch of physics that specifically focuses on the motion of objects and the forces acting on them, the correct answer is mechanics.
Pergunta 19 Relatório
An open-tube mercury manometer is used to measure the pressure in a gas tank. When the atmospheric pressure is 101,325 Pa
, what is the absolute pressure in Pa
in the tank if the height of the mercury in the open tube is 25 cm higher
Pergunta 20 Relatório
Which of the following is a type of incandescent light source?
Detalhes da Resposta
The Tungsten filament lamp is a type of incandescent light source.
An incandescent light source works by using electricity to heat a filament inside the bulb until it becomes so hot that it emits light. In a tungsten filament lamp, the filament is made of tungsten, which is a metal that has a very high melting point. This allows the filament to get extremely hot without melting.
When an electric current passes through the filament, it heats up and starts to glow, producing visible light. The light emitted by a tungsten filament lamp is actually a result of the high temperature, which causes the atoms in the filament to vibrate and release energy in the form of light.
Incandescent light sources like tungsten filament lamps have been widely used for many years because they produce a warm, yellowish light that is similar to natural sunlight. However, they are not very energy-efficient, as a significant amount of the electrical energy is converted into heat rather than light.
In recent years, there has been a shift towards more energy-efficient alternatives like LED lamps and fluorescent lamps. LED lamps use a different mechanism to produce light, using a semiconductor that emits light when electric current passes through it. Fluorescent lamps use a gas-filled tube that emits ultraviolet light when electric current flows through it, and this ultraviolet light is then converted into visible light by a phosphor coating inside the tube.
So, in summary, the tungsten filament lamp is the type of incandescent light source among the options given. It works by heating a tungsten filament to a very high temperature, causing it to emit light. However, it is less energy-efficient compared to LED and fluorescent lamps.
Pergunta 21 Relatório
A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.
Detalhes da Resposta
To find the tension in the rope, we can first use the formula for centripetal force, which is given by:
F_centripetal = (m * v^2) / r
where: - F_centripetal is the centripetal force - m is the mass of the object - v is the velocity of the object - r is the radius of the circular path
In this case, the mass of the object (m) is given as 2 kg and the radius (r) is given as 1.2 m.
Now, to find the velocity (v), we need to convert the given value of 120 rev/min to m/s.
Here's how we can do that:
1. First, convert the revolutions per minute (rev/min) to revolutions per second (rev/s) by dividing by 60 (since there are 60 seconds in a minute):
120 rev/min = 120/60 rev/s = 2 rev/s
2. Next, we need to convert the revolutions per second to the linear velocity in meters per second (m/s). To do this, we need to find the circumference of the circular path.
The circumference of a circle is given by the formula:
C = 2πr where r is the radius of the circular path.
Substituting the value of the radius (r = 1.2 m) into the formula, we have:
C = 2π * 1.2 = 2.4π Now, to find the linear velocity (v), we can multiply the circumference (C) by the number of revolutions per second (2 rev/s):
v = C * rev/s = 2.4π * 2 = 4.8π m/s
Now that we have the values of m (2 kg) and v (4.8π m/s), we can substitute them into the centripetal force formula to find the tension in the rope:
F_centripetal = (m * v^2) / r = (2 * (4.8π)^2) / 1.2
Simplifying further:
F_centripetal = (2 * 23.04π^2) / 1.2
F_centripetal = 38.4π^2
Finally, to get a numerical value for the tension in the rope, we can approximate the value of π to 3.14 and calculate the centripetal force:
F_centripetal ≈ 38.4 * 3.14^2 ≈ 379 N
Therefore, the tension in the rope is approximately 379 N.
Therefore, the correct answer is 379.
Pergunta 22 Relatório
A positively charged particle is placed near a negatively charged particle. What is the direction of the electric force between the two particles?
Detalhes da Resposta
The correct answer is The electric force is directed from the positive particle to the negative particle.
When a positively charged particle is placed near a negatively charged particle, they exert an attractive force on each other. This force is called the electric force.
According to Coulomb's Law, the electric force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
In this case, the positively charged particle has a positive charge and the negatively charged particle has a negative charge. Since opposite charges attract each other, the electric force between them is attractive.
Therefore, the electric force is directed from the positive particle to the negative particle.
Pergunta 23 Relatório
How much net work is required to accelerate a 1200 kg car from 10 ms-1 to 15 ms-1
Detalhes da Resposta
Pergunta 24 Relatório
From the diagram above, if the potential difference across the resistor, capacitor and inductor are 60V, 120V and 30V respectively, the effective potential difference is
Detalhes da Resposta
Pergunta 25 Relatório
Which of the following thermometers measures temperature from the thermal radiation emitted by objects?
Detalhes da Resposta
A pyrometer thermometer measures temperature from the thermal radiation emitted by objects.
When objects are heated, they emit thermal radiation, which is a form of electromagnetic radiation. This radiation is primarily in the infrared wavelength range. A pyrometer thermometer is specifically designed to measure the intensity of this thermal radiation and convert it into a temperature reading.
The pyrometer thermometer works based on the principle of measuring the amount of thermal radiation reaching the sensor. This is done using a detector that is sensitive to the infrared wavelength range. The detector absorbs the thermal radiation emitted by the object and generates an electrical signal proportional to the intensity of the radiation.
The electrical signal from the detector is then processed by the thermometer's electronics to calculate and display the corresponding temperature. The calibration of the thermometer ensures accurate temperature readings based on the known relationship between the intensity of thermal radiation and temperature.
Pyrometer thermometers are commonly used in industrial applications where contact-based temperature measurement methods are not feasible or accurate enough. They can measure temperatures of objects from a distance without physically touching them, which makes them suitable for measuring high temperatures, moving objects, or objects in hazardous or inaccessible environments.
Therefore, the pyrometer thermometer is the correct option for measuring temperature from thermal radiation emitted by objects.
Pergunta 26 Relatório
Which process is responsible for production of energy in stars?
Detalhes da Resposta
The process responsible for the production of energy in stars is nuclear fusion.
Nuclear fusion is the process where two or more atomic nuclei come together to form a heavier nucleus. In stars, the fusion of hydrogen nuclei (protons) into helium nuclei is the main source of energy.
Here's how it works:
This ongoing fusion process in stars is called stellar nucleosynthesis. It occurs throughout the star's lifetime until the available hydrogen in the core is depleted. At this point, depending on the star's mass, different fusion reactions may take place, leading to the production of heavier elements.
In summary, nuclear fusion, the fusion of hydrogen nuclei into helium nuclei, is the process responsible for the production of energy in stars.
Pergunta 27 Relatório
A step-down transformer is used on a 2.2 kV line to deliver 110 V. How many turns are on the primary windings if the secondary has 25 turns?
Detalhes da Resposta
To determine the number of turns on the primary winding of a step-down transformer, we need to understand how a transformer works and how the voltage is transformed from the primary to the secondary winding.
A transformer operates on the principle of electromagnetic induction. When an alternating current flows through the primary winding, it creates a changing magnetic field that induces a voltage in the secondary winding.
The voltage ratio between the primary and secondary windings is determined by the ratio of the number of turns in each winding. This means that if we decrease the number of turns in the secondary winding compared to the primary winding, we can reduce the voltage output.
In this case, we are given that the secondary winding has 25 turns and we want to deliver 110 V. The primary winding has a higher voltage, which is 2.2 kV (kilovolts) or 2200 V.
To determine the number of turns on the primary winding, we can set up a simple equation using the voltage ratios:
Primary voltage / Secondary voltage = Primary winding turns / Secondary winding turns
Plugging in the values we have:
2200 V / 110 V = Primary winding turns / 25 turns
Simplifying the equation:
20 = Primary winding turns / 25
To solve for the number of turns on the primary winding, we can cross multiply:
20 x 25 = Primary winding turns
Therefore, the number of turns on the primary winding is 500.
So, the correct answer is 500.
Pergunta 28 Relatório
The number of holes in an intrinsic semiconductor
Detalhes da Resposta
The number of holes in an intrinsic semiconductor is equal to the number of free electrons.
In an intrinsic semiconductor, the valence band is completely filled with electrons. However, due to thermal energy, some of these electrons can gain enough energy to jump to the conduction band, leaving behind holes in the valence band.
For every electron that moves to the conduction band, a hole is created in the valence band. Since the number of electrons and holes is equal, the number of holes in an intrinsic semiconductor is equal to the number of free electrons.
Therefore, the correct option is: is equal to the number of free electrons.
Pergunta 29 Relatório
The pitch of a musical note is determined by the frequency of the sound wave that it produces. If two instruments have the same frequency, which of the following factors will most affect the difference in their pitches?
Detalhes da Resposta
The frequency of a sound wave is proportional to the tension of the string. If two instruments have the same frequency, but one has a tighter string, then the instrument with the tighter string will have a higher pitch.
The other factors listed, such as the size of the instrument, the material of the instrument, and the shape of the instrument, will also affect the pitch of the instrument, but they will have a smaller effect than the tension of the string.
Pergunta 30 Relatório
A travelling wave of amplitude 0.80 m has a frequency of 16 Hz and a wave speed of 20 ms-1
Calculate the wave number of the wave.
Detalhes da Resposta
The wave number of a wave is defined as the number of wavelengths per unit distance. It represents the spatial frequency of the wave.
In this case, the wave has a frequency of 16 Hz, which means it completes 16 cycles or oscillations per second. Each cycle corresponds to one wavelength.
The wave speed is given as 20 m/s, which is the speed at which the wave propagates through the medium.
To calculate the wave number, we can use the formula:
Wave number (k) = 2? / wavelength (?)
First, we need to find the wavelength of the wave. We can use the formula:
Wave speed (v) = frequency (f) x wavelength (?)
Rewriting the formula, we have:
Wavelength (?) = wave speed (v) / frequency (f)
Substituting the given values, we have:
Wavelength (?) = 20 m/s / 16 Hz
Simplifying the expression, we get:
Wavelength (?) = 1.25 m
Now, we can calculate the wave number using the formula:
Wave number (k) = 2? / wavelength (?)
Substituting the value of the wavelength, we get:
Wave number (k) = 2? / 1.25 m
Simplifying the expression, we get:
Wave number (k) ? 5.03
Therefore, the wave number of the wave is approximately 5.
Pergunta 31 Relatório
The near point of a patient's eye is 50.0 cm. What power (in diopters) must a corrective lens have to enable the eye to see clearly an object 25.0 cm away?
Pergunta 32 Relatório
Which of the following is NOT a limitation of experimental measurements?
Detalhes da Resposta
Instrument resolution is not a limitation of experimental measurements. It is the smallest change in a measured quantity that can be detected by an instrument. While instrument resolution limits the accuracy of a measurement, it is not a limitation of experimental measurements itself.
Pergunta 33 Relatório
In the diagram above, if the south poles of two magnets stroke a steel bar, the polarities at X and Y will respectively be
Detalhes da Resposta
The polarities at X and Y would be north and north.
Pergunta 34 Relatório
The pinhole camera works on
Detalhes da Resposta
The pinhole camera works on the principle of the rectilinear propagation of light. This principle states that light travels in straight lines. When light passes through the tiny hole in a pinhole camera, it forms an inverted image on the opposite side of the camera. The size of the image depends on the distance between the object and the pinhole.
Pergunta 35 Relatório
What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from −10oC to 10oC ?
[specific latent heat of fusion of ice = 3.34 x 105 Jkg−1, Specific heat capacity of water = 4200 Jkg−1 k−1
Specific heat capacity of ice = 2100 Jkg−1k−1
Pergunta 36 Relatório
Find the tension in the two cords shown in the figure above. Neglect the mass of the cords, and assume that the angle is 38° and the mass m is 220 kg
[Take g = 9.8 ms-2]
Detalhes da Resposta
W = mg = 220 x 9.8 = 2156 N
⇒Sin 38º = 2156T1
⇒ T1 = 2156Sin38
⇒ T1 = 3502 N
Cos 38º = T2T1
⇒ T2 = 3502 x Cos 38º
⇒ T2 = 2760 N
; T1
= 3502 N, T2
= 2760 N.
Pergunta 37 Relatório
The diagram above illustrates the penetrating power of some types of radiation. X, Y and Z are likely
Detalhes da Resposta
The penetrating power of alpha rays, beta rays, and gamma rays varies greatly. Alpha particles can be blocked by a few pieces of paper. Beta particles pass through paper but are stopped by aluminum foil. Gamma rays are the most difficult to stop and require concrete, lead, or other heavy shielding to block them.
Therefore, X = γ-ray; Y = α-particle; Z = β-particle
Pergunta 38 Relatório
A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]
Detalhes da Resposta
To find the effort E required to lift the load, we first need to understand the concept of mechanical efficiency in levers.
A lever is a simple machine that consists of a rigid beam (lever arm) that pivots around a fixed point called the fulcrum. In this case, the fulcrum is point P.
The mechanical efficiency of a lever is defined as the ratio of the output work done (load lifted) to the input work done (effort applied). Mathematically, it can be expressed as:
Efficiency = (Output Work / Input Work) * 100%
In this problem, the load is the output work and the effort is the input work.
Given: Load = 200 kg Length of lever (distance between fulcrum and load) = 10 m Efficiency = 80% Gravitational acceleration (g) = 10 m/s^2
To calculate the effort, let's first calculate the output work:
Output Work = Load * Distance lifted
The distance lifted is equal to the length of the lever arm, which is 10 m.
Output Work = 200 kg * 10 m = 2000 kg·m
Since 1 kg·m is equivalent to 10 J (1 Joule), we can convert the units:
Output Work = 2000 kg·m * 10 J/kg·m = 20000 J
Now, let's calculate the input work:
Input Work = Effort * Distance moved by the effort
The distance moved by the effort is the length of the lever arm, which is 110 m.
Input Work = Effort * 110 m
Using the formula for mechanical efficiency, we can rewrite it as:
Efficiency = (Output Work / Input Work) * 100%
Solving for the effort:
Effort = (Output Work / (Efficiency/100)) / Distance moved by the effort
Effort = (20000 J / (80/100)) / 110 m
Simplifying the equation:
Effort = (20000 J / 0.8) / 110 m
Effort = 250 J / m
Given that g = 10 m/s^2, we know that 1 N = 1 kg·m/s^2. Therefore, we can convert the units:
Effort = (250 J / m) / (1 kg·m/s^2 / 1 N)
Effort = 250 N
Therefore, the effort E required to lift the load is 250 N.
Pergunta 39 Relatório
On a particular hot day, the temperature is 40°C and the partial pressure of water vapor in the air is 38.8 mmHg. What is the relative humidity?
Detalhes da Resposta
To calculate the relative humidity, we need to understand the concept of saturation and how much water vapor the air can hold at a given temperature.
Saturation is the point at which the air is holding the maximum amount of water vapor it can hold at a particular temperature. Once the air reaches saturation, any additional moisture will start to condense into liquid water.
The amount of water vapor that the air can hold increases with temperature. Warmer air can hold more water vapor, while cooler air can hold less.
Now, let's calculate the relative humidity using the given information:
1. Find the saturation vapor pressure at 40°C: - The saturation vapor pressure is the maximum amount of water vapor the air can hold at a specific temperature. - At 40°C, the saturation vapor pressure is approximately 55.3 mmHg.
2. Calculate the relative humidity: - Relative humidity is the ratio of the current partial pressure of water vapor to the saturation vapor pressure, expressed as a percentage. - Relative Humidity = (Partial pressure of water vapor / Saturation vapor pressure) * 100 - In this case, the partial pressure of water vapor is 38.8 mmHg and the saturation vapor pressure at 40°C is 55.3 mmHg. - Plugging in these values into the formula, we get: Relative Humidity = (38.8 mmHg / 55.3 mmHg) * 100 = 70.2%
Therefore, the relative humidity on this particular hot day is approximately 70%.
Answer: The correct option is 70.
Pergunta 40 Relatório
A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.
[Take g = 10 ms-2]
Gostaria de prosseguir com esta ação?