Inapakia....
Bonyeza na Ushikilie kuvuta kuzunguka |
|||
Bonyeza Hapa Kufunga |
Swali 1 Ripoti
A wheelbarrow inclined at 60º to the horizontal is pushed with a force of 150N. What is the horizontal component of the applied force
Maelezo ya Majibu
When you push a wheelbarrow inclined at an angle to the horizontal, the applied force can be divided into two components: a **horizontal component** and a **vertical component**. To find the horizontal component of the force, you need to use the concept of resolving vectors.
The force of 150N is acting at an angle of 60º to the horizontal. The horizontal component of this force can be calculated using the cosine of the angle. The formula to determine the horizontal component \( F_{\text{horizontal}} \) is given by:
Fhorizontal = Fapplied \times \cos(\theta)
Where:
Substitute the values into the formula:
Fhorizontal = 150N \times \cos(60º)
We know that \(\cos(60º)\) equals 0.5.
Therefore:
Fhorizontal = 150N \times 0.5 = 75N
Thus, the **horizontal component** of the applied force is 75N.
Swali 2 Ripoti
The capacitance of a capacitor, C, is inversely proportional to
Maelezo ya Majibu
The capacitance of a capacitor is primarily determined by three key factors: the area of the plates, the distance between the plates, and the dielectric material used between the plates.
Capacitance (C) is calculated using the formula:
\(C = \frac{\varepsilon A}{d}\)
Where:
Let's analyze the relationship:
In summary, the capacitance of a capacitor is inversely proportional to the distance between the plates. Hence, you increase capacitance by decreasing the distance between the plates.
Swali 3 Ripoti
The land and sea breeze is attributed to
Maelezo ya Majibu
The phenomenon of land and sea breeze is primarily attributed to convection.
To understand this, let's first look at what land and sea breezes are:
Land Breeze: At night, the land cools down faster than the sea. The cooler, denser air from the land moves towards the sea, and this is known as a land breeze.
Sea Breeze: During the day, the land heats up more quickly than the sea. The warmer, lighter air over the land rises, and the cooler air from the sea moves in to take its place. This movement of air from the sea to the land is known as a sea breeze.
Both of these processes involve the movement of air due to differences in temperature and density, which is essentially the process of convection.
Convection is the transfer of heat through a fluid (like air or water) and is responsible for moving air masses and creating these breezes. The warm air, being less dense, rises, and the cooler, denser air moves in to replace it.
In contrast, conduction is the transfer of heat through a solid material, and radiation is the transfer of heat in the form of electromagnetic waves, neither of which primarily drive the processes of these breezes, making convection the key player.
Swali 4 Ripoti
As per Faraday's laws of electromagnetic induction, an e.m.f is induced in a conductor whenever
Maelezo ya Majibu
According to Faraday's laws of electromagnetic induction, an electromotive force (e.m.f) is induced in a conductor whenever it **cuts magnetic flux**. This means that for an e.m.f to be induced, the conductor must move in such a way that it intersects the magnetic lines of force. It is the relative motion between the conductor and the magnetic field that leads to the change in magnetic flux, resulting in the induction of e.m.f.
Let's explore why this is the correct answer using reasoning:
Therefore, the phenomenon where a conductor cuts magnetic flux is essential for electromagnetic induction as per Faraday's laws.
Swali 5 Ripoti
The dimension of power is
Maelezo ya Majibu
The dimension of power in physics is expressed in terms of the base units of mass (M), length (L), and time (T). Power is the rate at which work is done or energy is transferred over time, and it has the unit of watt (W) which is equivalent to one joule per second.
To derive the dimension of power:
1. Work has the dimension of energy, which is force applied over a distance. The dimension of work (or energy) is M L2 T-2 because force has the dimension M L T-2 and distance adds another L.
2. Since power is work done per unit time, you would divide the dimension of work by time (T).
Thus, the dimensional formula for power is:
M L2 T-3
Swali 6 Ripoti
The charge of magnitude 1.6 x 10 −19 C is placed in a uniform electric field of intensity 1200Vm−1 . Calculate its acceleration, if the mass of the charge is 9.1 x 10−31 kg
Maelezo ya Majibu
To calculate the acceleration of a charge in an electric field, we start by determining the force acting on the charge. The force \( F \) experienced by a charge \( q \) in a uniform electric field \( E \) is given by the equation:
F = q * E
We are given:
Substituting these values into the equation for force:
F = 1.6 x 10-19 C * 1200 V/m
This results in:
F = 1.92 x 10-16 N
Next, we use Newton’s second law of motion to find the acceleration \( a \) of the charge. This law is given as:
F = m * a
Rearranging for \( a \), we have:
a = F / m
We know:
Substituting these values in the equation for acceleration:
a = \(\frac{1.92 x 10^{-16} N}{9.1 x 10^{-31} kg}\)
Calculating the above expression gives:
a ≈ 2.11 x 1014 ms-2
Therefore, the acceleration of the charge is approximately 2.11 x 1014 ms-2.
Swali 7 Ripoti
At absolute zero temperature, the average velocity of the molecules
Maelezo ya Majibu
At absolute zero temperature, which is defined as 0 Kelvin or -273.15 degrees Celsius, the energy of molecular motion ceases. This means that the molecules theoretically have minimal energy, and hence, their motion stops entirely. Therefore, the average velocity of the molecules is zero. In reality, absolute zero is a theoretical limit, and it is practically unreachable, but it serves as a concept to help in understanding the behavior of molecules at extremely low temperatures. Thus, under this theoretical condition, the average motion of molecules would be nonexistent. In summary, the average velocity of the molecules at absolute zero is zero.
Swali 8 Ripoti
The value of R in the above circuit to make the galvanometer measure 2A is
Maelezo ya Majibu
Given: Ig = 50mA = 0.05A, I to be measured = 2A, r = 2Ω , Is = I - Ig = 2 - 0.05 = 1.95A
Shunt(R) = IgIs x r
R = 0.051.95 x 10 = 0.2564Ω
Swali 9 Ripoti
Two points on a velocity-time graph have coordinates (2s, 5m/s) and (4s, 15m/s). Calculate the mean acceleration
Maelezo ya Majibu
The mean acceleration of an object is determined by the change in velocity over the change in time. This is given by the formula:
Mean Acceleration (a) = (Final Velocity - Initial Velocity) / (Final Time - Initial Time)
From the velocity-time graph, we have the following points:
Initial Point: (2s, 5m/s)
Final Point: (4s, 15m/s)
Here, the Initial Velocity is 5m/s, the Final Velocity is 15m/s, the Initial Time is 2s, and the Final Time is 4s.
Plug these values into the formula:
Mean Acceleration (a) = (15m/s - 5m/s) / (4s - 2s)
Simplifying this, we get:
Mean Acceleration (a) = 10m/s / 2s = 5m/s²
The mean acceleration is therefore 5.0 m/s².
Swali 10 Ripoti
What is the least possible error encountered when taking measurement with a metre rule?
Maelezo ya Majibu
A standard meter rule has markings that are usually every millimeter (1 mm). The least count, which is the smallest measurement that can be accurately read, is often 1 mm.
The least possible error is generally considered to be half of the smallest division, so it is ±0.05cm (or ±0.5mm).
Swali 11 Ripoti
How much joules of heat are given out when a piece of iron, of mass 60g and specific heat capacity 460JKg−1 K−1 , cools from 75ºC to 35ºC
Maelezo ya Majibu
To find out how much heat is given out when the piece of iron cools down, we can use the formula for heat transfer:
Q = mcΔT
Where:
First, let's list the values given and convert the mass from grams to kilograms:
Now, calculate the change in temperature:
ΔT = final temperature - initial temperature = 35ºC - 75ºC = -40ºC
Note: Since we are calculating the heat given out as the iron cools, the temperature change will be negative, which will make Q positive, indicating heat is released.
Substitute these values into the heat transfer formula:
Q = mcΔT = (0.06 kg) x (460 J/Kg·K) x (-40ºC)
Q = 0.06 x 460 x -40
Q = -1104 Joules
Since the question asks for how much heat is given out, we consider the positive value of Q, which is 1104J. Therefore, 1104J of heat is given out when the piece of iron cools from 75ºC to 35ºC.
Swali 12 Ripoti
Rainbow is formed when sunlight undergoes
Maelezo ya Majibu
A rainbow is formed through a combination of three processes: reflection, refraction, and dispersion. Let's break down each process to understand how a rainbow forms:
1. Refraction: When sunlight enters a raindrop, it bends or changes direction. This bending of light is known as **refraction**. Different colors of sunlight bend by different amounts because they have different wavelengths.
2. Reflection: Once inside the raindrop, the light gets reflected off the inside surface of the drop. This reflection sends the light back out of the raindrop at different angles.
3. Dispersion: As the light exits the raindrop, it bends again (refraction). Because each color bends by a different amount, the sunlight is spread out into its component colors, creating a spectrum. This spreading into a spectrum is called **dispersion**.
All three processes contribute to the formation of a rainbow. The combination of **refraction, reflection, and dispersion** results in the beautiful arc of colors that we see in the sky.
Swali 13 Ripoti
A sonometer's fundamental note is 50Hz, what is the new frequency when the tension is four times the original?
Maelezo ya Majibu
To solve this problem, we need to understand the relationship between tension and frequency in a sonometer wire. The frequency of a vibrating string, such as one in a sonometer, is directly proportional to the square root of the tension in the string. Mathematically, this relationship is expressed as:
f ∝ √T
Where f is the frequency and T is the tension. In the given problem, the original frequency is 50 Hz, and the tension is increased to four times its original value. Let's analyze how this change in tension affects the frequency:
- Original tension = T
- New tension = 4T
Substitute the new tension into the formula:
f_new = 50 Hz × √(4T/T)
Simplify the equation:
f_new = 50 Hz × √4
f_new = 50 Hz × 2
f_new = 100 Hz
Thus, when the tension is four times the original tension, the new frequency of the sonometer's fundamental note becomes 100 Hz.
Swali 14 Ripoti
Inbreeding is highly discouraged in humans because it may
Maelezo ya Majibu
Inbreeding is the process where closely related individuals, like cousins or siblings, mate and produce offspring. **This practice is highly discouraged in humans for several reasons, but a significant concern is the potential for an outbreak of hereditary diseases.**
Here’s why inbreeding is problematic:
Therefore, **to promote genetic diversity and reduce the risk of hereditary diseases in offspring, inbreeding is discouraged in human populations**. This way, offspring are less likely to inherit harmful genetic combinations that can lead to health problems.
Swali 15 Ripoti
The mechanical advantage of the machine shown above
Maelezo ya Majibu
Mechanical advantage of a machine = LOADEFFORT
In this case of a wedge, we can consider the dimensions given:
Load distance (height of the machine): 15 cm
Effort distance (movement of the effort): 0.5 cm
M.A = 150.5 = 30.0
Swali 16 Ripoti
Calculate the depth of a swimming pool if the apparent depth is 10cm. ( Refractive index of water = 1.33 )
Maelezo ya Majibu
To calculate the real depth of a swimming pool given the apparent depth, we can use the concept of refraction of light. When light passes from one medium to a denser medium, it bends towards the normal. This bending effect causes objects submerged in water to appear closer to the surface than they actually are. The formula to relate these depths is given by:
Real Depth = Apparent Depth × Refractive Index
Given the problem:
Using the formula:
Real Depth = 10 cm × 1.33
Calculating the above:
Therefore, the depth of the swimming pool is 13.3cm.
Swali 17 Ripoti
A hydrometer of mass y kg and volume 2y x 10−5 m3 floats in a fluid with 20% of its volume above the fluid, what is the density of the fluid?
Maelezo ya Majibu
To find the density of the fluid, we need to apply the principle of floatation, which states that the weight of the fluid displaced by the submerged part of the object is equal to the weight of the object. Let's walk through the steps:
Step 1: Understand the volume submerged
The hydrometer has a total volume of 2y x 10-5 m3. It floats with 20% of its volume above the fluid. Hence, 80% of its volume is submerged in the fluid.
Submerged Volume, Vsub = (0.80) x (2y x 10-5 m3) = 1.6y x 10-5 m3
Step 2: Apply the principle of floatation
The weight of the fluid displaced equals the weight of the hydrometer.
Weight of hydrometer = Mass x Gravity = y kg x g (where g is the acceleration due to gravity). For the purpose of calculations, g can be considered as 9.81 m/s2.
Weight of displaced fluid = Density of fluid (ρfluid) x Submerged Volume x g
According to the principle of floatation:
y x g = ρfluid x 1.6y x 10-5 m3 x g
g is common on both sides and can be canceled out:
y = ρfluid x 1.6y x 10-5
Step 3: Solving for the density of the fluid
ρfluid = y / (1.6y x 10-5)
The y on both numerator and denominator cancels out:
ρfluid = 1 / (1.6 x 10-5)
ρfluid = 6.25 x 104 kg/m3
Thus, the density of the fluid is 6.25 x 104 kg/m3.
Swali 18 Ripoti
Newton's law of cooling is valid only for a
Maelezo ya Majibu
Newton's Law of Cooling states that the rate of heat loss of an object is directly proportional to the difference in temperature between the object and its surroundings, provided that this temperature difference is small.
Therefore, this law is only valid within a small temperature range.
Swali 19 Ripoti
The value of R required to make the galvanometer measure voltage up to 40V in the diagram above
Maelezo ya Majibu
In a galvanometer setup intended to measure voltages, you often encounter a configuration known as a voltmeter, where a resistor is added in series with the galvanometer to increase its range of measurement.
The basic principle is that the total resistance of the voltmeter (comprising the galvanometer's resistance and the additional series resistor) allows it to handle a higher voltage by limiting the current that flows through the galvanometer. The maximum voltage (V) that can be measured by the galvanometer is determined by Ohm's Law: V = I * R,
Where:
Assuming the galvanometer has a known internal resistance (G) and a known full-scale current (I_fullscale), the resistance R required in series can be calculated via the formula:
R = (V / I_fullscale) - G
For this solution, you need either the values of G and I_fullscale or their product (G * I_fullscale). Without those exact specifications provided, it would be imprudent to give an exact numeric answer.
However, if this is a typical example and you have a typical galvanometer with a full-scale current of 50 μA and an internal resistance of 500 Ω, you can compute:
R = (40 / 50 x 10^-6) - 500 = 2000 - 500 = 1500 Ω
Therefore, you would need an additional R = 1990 Ω - 1500 Ω = 490 Ω, meaning the closest possible practical value from your choices is 1990 Ω (including the internal resistance).
If the specific parameters of the galvanometer differ, adjust the calculation accordingly, but the general process is as laid out here.
Swali 20 Ripoti
The bursting of water pipes during very cold weather, when the water in the pipes form ice could be attributed to
Maelezo ya Majibu
The bursting of water pipes during very cold weather is primarily attributed to the expansion of water on freezing.
Here's why this happens:
1. **Normal water behavior below freezing:** Typically, when most substances freeze, they contract because the molecules get closer together. However, water behaves differently due to its unique molecular structure. As water freezes, it forms a crystalline structure that makes ice less dense than liquid water, causing it to expand.
2. **Effect of expansion:** When water inside a pipe freezes, it expands. This expansion puts tremendous pressure on the pipe walls because the solid ice takes up more space than the liquid water. Most pipes are rigid and do not have enough room to accommodate the expanded volume of ice.
3. **Resulting pressure:** The increased pressure caused by the expanding ice can cause the pipe to crack or burst, especially if there is no other outlet for the water or ice to expand into.
In summary, pipes burst during cold weather primarily due to the expansion of water as it freezes, which creates pressure that the pipe cannot withstand. This phenomenon is due to the unique property of water where it expands upon freezing, unlike most other substances which contract in their solid form.
Swali 21 Ripoti
Maelezo ya Majibu
In a series resonant circuit, the current flowing in the circuit is at its maximum. Let me explain why:
In a series resonant circuit, we have a resistor (R), inductor (L), and capacitor (C) connected in series with an AC source. At a particular frequency called the resonant frequency, these circuits exhibit some unique characteristics. This resonant frequency is determined by the values of the inductor and capacitor and is given by the formula:
f₀ = 1 / (2π√(LC))
At the resonant frequency:
Thus, in a series resonant circuit, when it is operating at its resonant frequency, the current flowing is at its maximum.
Swali 22 Ripoti
The major building block of an organism is...
Maelezo ya Majibu
The major building block of an organism is Carbon. Let me explain why in a simple yet comprehensive manner:
Carbon is a unique element found in all living organisms. Its importance comes from its ability to form stable bonds with many other elements, including hydrogen, oxygen, nitrogen, phosphorus, and sulfur. This versatility allows carbon to act as a backbone for the building of complex organic molecules, including proteins, nucleic acids (such as DNA and RNA), carbohydrates, and lipids. These molecules are essential for the structure, function, and regulation of the body's tissues and organs.
Here's why Carbon is indispensable:
In summary, Carbon is the primary building block of life due to its unique chemical properties that allow the formation of complex molecules necessary for life's structure and processes.
Swali 23 Ripoti
Which of the following operates based on magnetic effect of electric current?
Maelezo ya Majibu
The device that operates based on the magnetic effect of electric current is the Dynamo.
To explain further, let's look at the concept of the magnetic effect of electric current:
A Dynamo is a device that converts mechanical energy into electrical energy. It operates based on the phenomenon called electromagnetic induction, which occurs due to the magnetic effect of electric current. When a coil of wire within the dynamo rotates in the presence of a magnetic field, it induces an electric current in the coil. Thus, the operation of a dynamo relies on the interaction between electric current and magnetic fields.
To contrast with other options:
Swali 24 Ripoti
The defect of the eye lens which occurs when the ciliary muscles are weak is
Maelezo ya Majibu
The defect of the eye lens that occurs when the ciliary muscles are weak is known as Presbyopia.
Here's a simple explanation:
The ciliary muscles in the eye are responsible for helping the lens to change shape so that you can focus on objects at different distances. As people age, the ciliary muscles may become weaker. This weakness hampers their ability to properly adjust the lens. As a result, the lens cannot accommodate or focus as effectively, especially when looking at nearby objects. This leads to a difficulty in seeing objects up close clearly, which is known as presbyopia.
Presbyopia is a natural condition associated with aging, and it typically becomes noticeable in people in their 40s or 50s. This is different from other eye conditions like:
So in summary, presbyopia is the condition that results from weakened ciliary muscles, affecting near vision as a person ages.
Swali 25 Ripoti
When a bus is accelerating, it must be
Maelezo ya Majibu
When a bus is accelerating, it is primarily changing its velocity. This is because velocity is a vector quantity, which means it includes both the speed and the direction of the object's movement. Acceleration refers to any change in this velocity. Therefore, the bus could be increasing its speed, decreasing its speed (which is also known as deceleration), or changing its direction. All these aspects involve a change in velocity.
Let's break it down further:
Changing its Speed: If the bus is speeding up or slowing down, it results in a change in the magnitude of its velocity, contributing to acceleration.
Changing its Direction: Even if the bus maintains a constant speed, if it changes direction (like taking a turn), its velocity is altered because direction is a part of velocity. This results in acceleration.
Changing its Position: While a change in position happens during acceleration, it is not the defining feature of acceleration. An object can change its position even if it is moving with constant velocity and not accelerating.
So, the key component here for acceleration is the change in velocity, which encompasses changes in speed, direction, or both.
Swali 26 Ripoti
When thermal energy in a solid is increased, the change in state is called
Maelezo ya Majibu
When the thermal energy in a solid is increased, the solid particles gain energy and begin to vibrate more vigorously. As the temperature rises, these particles eventually have enough energy to overcome the forces holding them in their fixed positions. This leads to a change of state from a solid to a liquid. This process is known as melting.
To further understand this, imagine an ice cube. As it absorbs heat, it gains energy, and the ice (which is a solid) starts to turn into water (which is a liquid). This transition is what we refer to as melting.
Thus, the term that describes this change of state, when a solid is heated and turns into a liquid, is melting.
Swali 27 Ripoti
The moon's acceleration due to gravity is 16 of the earth's value. The weight of a bowling ball on the moon would be
Maelezo ya Majibu
To determine the weight of a bowling ball on the moon, we need to understand the relationship between weight, gravity, and mass.
Weight is the force exerted by gravity on an object. On Earth, this force depends on the object's mass and the acceleration due to gravity, which is approximately 9.8 m/s². Weight can be calculated using the formula:
Weight = Mass x Gravity
On the moon, the acceleration due to gravity is only 1/6 of Earth’s gravity. This means the gravitational pull on the moon is much weaker compared to the Earth. If we take the Earth's gravity to be 9.8 m/s², the moon's gravity would be:
Moon's Gravity = (9.8 m/s²) x (1/6) ≈ 1.63 m/s²
Given that the weight of an object is directly proportional to the gravitational force, the weight of an object on the moon would be substantially less than its weight on Earth. Thus, the weight of the bowling ball on the moon would be:
Weight on Moon = (Mass) x (1.63 m/s²) = 1/6 of its weight on Earth
Therefore, the weight of a bowling ball on the moon is 1/6 of its weight on Earth.
Swali 28 Ripoti
An ideal transformer has
Maelezo ya Majibu
An ideal transformer is a hypothetical concept used in electrical engineering to simplify the analysis of real transformers. In an ideal transformer, several assumptions are made to avoid losses and inefficiencies. Here's what an ideal transformer has:
No flux leakage: In an ideal transformer, it is assumed that all the magnetic flux generated in the primary coil is perfectly linked with the secondary coil. This means there is no flux leakage. This assumption ensures maximum efficiency, as all the energy is transferred from the primary to the secondary coil without losses.
Let's briefly discuss the other concepts to understand why they don't pertain to an ideal transformer:
Maximum primary resistance: In an ideal transformer, the resistance of the windings is assumed to be zero. If the primary has maximum resistance, it would result in power loss due to the resistance, contradicting the idea of an ideal transformer.
Hysteresis: This refers to the energy loss that happens in the core material due to the cyclic magnetization and demagnetization processes. An ideal transformer assumes there is no hysteresis loss, meaning the core material does not absorb any energy during these cycles.
Eddy current: These are loops of electric current induced within conductors by a changing magnetic field, which can cause significant energy loss. In an ideal transformer, it is assumed that there are no eddy currents, hence no energy loss due to this effect.
In summary, an ideal transformer is characterized by having no flux leakage, and it assumes that there are no losses due to resistance, hysteresis, or eddy currents. This makes the ideal transformer a perfect, lossless device for the purposes of theoretical analysis.
Swali 29 Ripoti
Use the diagram above to answer the question that follows
The organism belongs to kingdom
Maelezo ya Majibu
The diagram is that of the virus. Viruses are obligate parasites, meaning they can't produce their own energy or proteins. They enter the host cell and use the cell's machinery to make their own nucleic acids and proteins. Viruses also use the host cell's lipids and sugar chains to create their membranes and glycoproteins. This parasitic replication can severely damage the host cell, which can lead to disease or cell death. They usually enter your body through your mucous membranes. These include your eyes, nose, mouth, penis, vagina and anus.
Viruses are a unique type of organism that are not plants, animals, or bacteria. They are often classified in their own kingdom. However, for the sake of the question, since most of their attributes and metabolic activities are more of the bacteria, we'll go with option A - Monera
Swali 30 Ripoti
A medium texture soil with high organic matter is
Maelezo ya Majibu
A medium texture soil with high organic matter is best described as loamy soil. Here's why:
Loamy soil is a type of soil that is characterized by a balanced mixture of sand, silt, and clay particles. Because of this blend, loamy soil is not too coarse like sandy soil, nor is it too compact and dense like clay soil, making it a medium texture.
Moreover, loamy soil is renowned for its high organic matter content. This means that it contains a significant amount of decomposed plant and animal residues, which enrich the soil and provide essential nutrients for plant growth. This high organic content enhances the soil's fertility and structure, enabling it to retain moisture yet drain well, making it ideal for farming and gardening.
In conclusion, due to its balanced texture and richness in organic matter, loamy soil is the best fit for a medium-textured soil with high organic matter.
Swali 31 Ripoti
The web-feet of frogs and toads is basically for
Maelezo ya Majibu
The web-feet of frogs and toads is primarily for swimming. These webbed feet act like paddles, allowing the frog or toad to move efficiently through the water. When the animal spreads its toes, the webbing provides a larger surface area, which gives better propulsion in the water. This adaptation is essential, as many species of frogs and toads spend a significant amount of their time in aquatic environments where efficient swimming helps them in searching for food, escaping predators, and traveling from one place to another. In essence, the webbed feet are a vital feature for their aquatic lifestyle.
Swali 32 Ripoti
Calculate the upthrust on a spherical ball of volume 4.2 x 10−4 m3 when totally immersed in a liquid of density 1028kgm−3
Maelezo ya Majibu
Upthrust(Force) = volume of object x density of liquid x g = V x ρ x g
U = 4.2 x 10−4 x 1028 x 10 ≊ 4.3N
Swali 33 Ripoti
An accumulator is 90% efficient. If it gives out 2700J of energy while discharging, how much energy does it take in?
Maelezo ya Majibu
In order to find out how much energy the accumulator takes in, given that it is 90% efficient and gives out 2700J of energy, we can use the formula for efficiency:
Efficiency = (Useful Energy Output / Total Energy Input) × 100%
Given:
Efficiency = 90%
Useful Energy Output = 2700J
We need to calculate the Total Energy Input (how much energy the accumulator takes in). Rearranging the formula to solve for Total Energy Input, we get:
Total Energy Input = Useful Energy Output / Efficiency
Substitute the known values:
Total Energy Input = 2700J / 0.9
Calculate the input:
Total Energy Input = 3000J
Therefore, the accumulator takes in 3000J of energy.
Swali 34 Ripoti
If the displacement of a car is proportional to the square of time, then the car is moving with
Maelezo ya Majibu
When we say that the displacement of a car is proportional to the square of time (d ∝ t²), it indicates a relationship between displacement (d) and time (t). This relationship is characteristic of motion where there is constant acceleration. Essentially, it means that the car is not moving at a constant speed (velocity) but is accelerating at a constant rate.
The mathematical representation of this scenario can be expressed using the formula for displacement under uniform acceleration:
d = ut + (1/2)at².
In this equation:
When the displacement is directly proportional to the square of time (d ∝ t²), it implies that the second term of the equation, which contains the (1/2)at² part, dominates the relationship. Thus, the initial velocity (u) is typically zero or negligible, making the entire displacement dependent on how time squared interacts with acceleration.
Therefore, the car is moving with uniform acceleration.
Swali 35 Ripoti
The degree of precision of a vernier caliper is
Maelezo ya Majibu
The degree of precision of a vernier caliper is actually the **smallest value** that the vernier scale can measure, which can be considered as the resolution or least count of the instrument. The degree of precision for most standard vernier calipers is 0.01 cm (or 0.1 mm). This means that the caliper can measure dimensions down to a hundredth of a centimeter.
To understand why this is the case, consider the construction of a vernier caliper:
This alignment allows more precise measurements than the main scale alone. If the vernier scale has 10 divisions which coincide over a length equal to 9 divisions on the main scale, then each division of the vernier scale represents an extra 0.01 cm. Therefore, it allows measuring smaller intervals between the main scale markings very precisely.
Thus, you won't find vernier calipers with a degree of precision of 0.005 cm, 0.1 cm, or 1.0 cm as options in standard practice for precise measurement tools.
Swali 36 Ripoti
Bile is a greenish alkaline liquid which is stored in the
Maelezo ya Majibu
Bile is a greenish alkaline liquid that plays a crucial role in the digestive process, particularly in the digestion and absorption of fats. It is produced in the liver, but it is not stored there. Instead, the bile is transported to a small organ where it is concentrated and stored until the body needs it for digestion. This organ is the gall bladder.
The gall bladder stores the bile and releases it into the small intestine when food, especially fatty food, enters the digestive tract. This helps in breaking down the fats into smaller droplets, making it easier for enzymes to digest them.
To sum up, the gall bladder is the organ responsible for storing bile.
Swali 37 Ripoti
Bilateral symmetry,cylindrical bodies and double openings are characteristic features of
Maelezo ya Majibu
Bilateral symmetry, cylindrical bodies, and double openings are characteristic features of nematodes. Nematodes, also known as roundworms, have a body structure that is symmetric along a single plane, which results in two mirror-image halves, thus exhibiting bilateral symmetry.
Furthermore, they usually have a cylindrical body shape, which means their bodies are long and narrow like a cylinder and taper at both ends. This shape helps them move through their environment easily. Additionally, nematodes have a complete digestive system with two openings: a mouth and an anus. This means that food enters through the mouth, gets digested, and waste exits through the anus.
In contrast, organisms like hydra, protozoa, and protists possess different anatomical features. Hydras, for example, typically show radial symmetry, and protozoa and protists generally do not have a well-defined body shape or bilateral symmetry as seen in nematodes. Therefore, the description fits nematodes best.
Swali 38 Ripoti
In a solar panel, solar beam is concentrated by using
Maelezo ya Majibu
In a solar panel system, the type of mirror used to concentrate solar beams is the Concave Mirror.
Explanation:
A concave mirror is a type of mirror that curves inward, like the inside of a bowl. This shape is very effective at focusing light. When sunlight hits a concave mirror, the mirror's shape causes the light beams to converge, or come together, at a single point known as the focus. This concentrated light can then be used to generate heat or electricity more efficiently.
Why not the others?
A convex mirror curves outward and disperses light beams rather than concentrating them.
A plane mirror has a flat surface and reflects light at the same angle it receives it, meaning it doesn't concentrate the beams.
A triangular mirror is not typically used in solar applications for concentrating light as its shape is not conducive to focusing beams effectively.
Therefore, a concave mirror is best suited for concentrating solar beams in solar panel systems.
Swali 39 Ripoti
I clear II sharp III poor IV dark
Which of the above happens when the hole of a pinhole camera is diminished?
Maelezo ya Majibu
A pinhole camera is a simple camera device that uses a tiny hole to project an inverted image of the scene in front of it onto a surface at the back of the camera. When you diminish the hole of a pinhole camera, meaning you make the hole smaller, a few effects occur on the resulting image. Here’s what happens:
Therefore, reducing the size of the pinhole in a pinhole camera results in the image becoming both darker and sharper.
Answer: II only (The image becomes sharper.)
Swali 40 Ripoti
288KJ is conducted across two opposite faces of a 3m cube of temperature gradient 90ºCm−1 in 7200s. Calculate the thermal conductivity.
Maelezo ya Majibu
The thermal conductivity of a material is a measure of its ability to conduct heat. It is defined by the formula:
Q = k × A × ΔT/Δx × t
Where:
We are given:
The cube has each side measuring 3 meters, so the area A of one face (since heat is conducted across two opposite faces, effectively using one face area for calculation) is:
A = 3m × 3m = 9 m2
Now, we need to solve for k (thermal conductivity):
Q = k × A × ΔT/Δx × t
288,000 J = k × 9 m2 × 90 ºC/m × 7,200 s
k = 288,000 / (9 × 90 × 7,200)
Calculate the denominator:
9 × 90 × 7,200 = 5,832,000
Therefore:
k = 288,000 / 5,832,000 ≈ 0.0493 W/mK
This converts approximately to 4.93 × 10-2 W/mK.
Therefore, the correct answer is 4.9 × 10-2 W/mK.
Je, ungependa kuendelea na hatua hii?