Current electricity is a fundamental concept in physics that deals with the flow of electric charge in a circuit. In this course, we will delve into various aspects of current electricity, focusing on key topics such as electromagnetic force (emf), potential difference (p.d.), current, internal resistance of a cell, and lost Volt.
One of the primary objectives of this course is to differentiate between electromagnetic force, potential difference, current, and internal resistance of a cell. Understanding these concepts is crucial as they form the basis of electrical circuits and their behavior. By grasping the differences between these terms, students will be able to analyze circuit parameters effectively.
Another key objective is to apply Ohm’s law to solve problems related to current electricity. Ohm’s law states that the current flowing through a conductor is directly proportional to the potential difference across it, provided the temperature remains constant. By mastering Ohm’s law, students will be equipped to calculate unknown electrical quantities in circuits.
The course also covers the measurement of resistance using techniques such as the meter bridge. The meter bridge is a useful tool that allows for precise determination of resistance in a circuit. By learning how to use the meter bridge, students can accurately measure resistance and understand its significance in circuit analysis.
Furthermore, students will explore the concepts of resistance in series and in parallel, as well as their combinations. Understanding how resistances behave in series and parallel configurations is essential for designing and analyzing complex circuits. By studying these configurations, students will gain insights into optimizing circuit performance.
Moreover, the course will introduce students to the potentiometer method of measuring emf, current, and internal resistance of a cell. The potentiometer is a versatile instrument that offers high precision in measuring electrical quantities. By utilizing the potentiometer, students can accurately measure key parameters in a circuit.
Lastly, the course will delve into electrical networks and the application of Kirchoff’s law. Kirchoff’s laws, including Kirchoff's voltage law and Kirchoff's current law, are fundamental principles in circuit analysis. By applying these laws, students can solve complex network problems and understand the behavior of current in circuits.
Hongera kwa kukamilisha somo la Current Electricity. Sasa kwa kuwa umechunguza dhana na mawazo muhimu, ni wakati wa kuweka ujuzi wako kwa mtihani. Sehemu hii inatoa mazoezi mbalimbali maswali yaliyoundwa ili kuimarisha uelewaji wako na kukusaidia kupima ufahamu wako wa nyenzo.
Utakutana na mchanganyiko wa aina mbalimbali za maswali, ikiwemo maswali ya kuchagua jibu sahihi, maswali ya majibu mafupi, na maswali ya insha. Kila swali limebuniwa kwa umakini ili kupima vipengele tofauti vya maarifa yako na ujuzi wa kufikiri kwa makini.
Tumia sehemu hii ya tathmini kama fursa ya kuimarisha uelewa wako wa mada na kubaini maeneo yoyote ambapo unaweza kuhitaji kusoma zaidi. Usikatishwe tamaa na changamoto zozote utakazokutana nazo; badala yake, zitazame kama fursa za kukua na kuboresha.
Physics for Scientists and Engineers
Manukuu
A Strategic Approach with Modern Physics
Mchapishaji
Pearson
Mwaka
2020
ISBN
978-0135245292
|
|
Fundamentals of Physics
Manukuu
Extended 10th Edition
Mchapishaji
Wiley
Mwaka
2013
ISBN
978-1118230718
|
Unajiuliza maswali ya zamani kuhusu mada hii yanaonekanaje? Hapa kuna idadi ya maswali kuhusu Current Electricity kutoka miaka iliyopita.
Swali 1 Ripoti
Which of the following pairs of musical instruments produce sound due to the vibration of air column?
Swali 1 Ripoti
You are provided with a battery of e.m.f, E, a standard resistor, R, of resistance 2 Ω, a key, K, an ammeter, A, a jockey, J, a potentiometer, UV, and some connecting wires.
(i) Measure and record the emf, E, of the battery.
(ii) Set up the circuit as shown in the diagram above with the key open.
(iii) Place the jockey at the point, U, of the potentiometer wire. Close the key and record the reading, i, of the ammeter.
(iv) Place the jockey at a point T on the potentiometer wire UV such that d = UT = 30.0 cm.
(v) Close the circuit, read and record the current, I, on the ammeter,
(vi) Evaluate I1.
(vi) Repeat the experiment for four other values of d = 40.0 cm, 50.0 cm, 60.0 cm and 70.0 cm. In each case, record I and evaluate I1.
(vii) Tabulate the results
(ix) Plot a graph with d on the vertical axis and I on the horizontal axis stalling both axes from the origin (0,0).
(x) Determine the slope, s, of the graph.
(xi) From the graph determine the value I1, of I when d = 0. (ci) Given that=s, calculate 8.
(xii) State two precautions taken to ensure accurate results.
(xii) Given that Eδ = s, calculate δ.
(b)(i) Write down the equation that connects the resistance, R, of a wire and the factors on which it depends. State the meaning of each of the symbols.
(ii) An electric fan draws a current of0.75 A in a 240 V circuit. Calculate the cost of using, the fan for 10 hours if the utility rate is $ 0.50 per kWh.