Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
Calculate the effective capacitance of the circuit in the diagram given
Awọn alaye Idahun
The three 2uf capacitors are in parallel to each other so u add them like this
2uf+2uf+2uf=6uf
So u have three capacitors in series
6uf 2uf and 3uf
They are in series so
1/C= 1/6+1/3=1/2
C=2uf
Then the same thing with the last two capay
1/2+1/2=1uf
Thanks
Ibeere 2 Ìròyìn
In the diagram shown, which of the simple pendulum will resonate with P when set into oscillation?
Awọn alaye Idahun
Ibeere 3 Ìròyìn
An object weighs 30N in air and 21N in water. The weight of the object when completely immersed in a liquid of relative density 1.4 is
Awọn alaye Idahun
Weight of water displaced = upthrust = 30 - 21 = 9N
Mass of water displaced = 910
= 0.9kg
Volume of object = 9 × 10−4
m3
= (9 × 10−4
) (1.4 ×103)
= 1.26kg = 12N
30 - 12.6 = 17.4N
Ibeere 4 Ìròyìn
A lens of focal length 15cm forms on erect image which is three times the size of the object. The distance between the object and the image is ___.
Awọn alaye Idahun
We can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length of the lens, v is the distance between the lens and the image, and u is the distance between the lens and the object. From the problem, we know that the focal length of the lens is 15 cm, and the image is erect and three times the size of the object. This means that the image distance v is positive and the object distance u is negative (since the object is in front of the lens). Let's assume that the object distance u is -x cm, where x is a positive number. Then, the image distance v is +3x cm, since the image is three times the size of the object. Substituting these values into the lens formula, we get: 1/15 = 1/(+3x) - 1/(-x) Simplifying the right-hand side, we get: 1/15 = (1 + 3)/3x Multiplying both sides by 3x, we get: 3x/15 = 4 Simplifying, we get: x = 20 Therefore, the distance between the object and the lens is -20 cm (since it is in front of the lens), and the distance between the image and the lens is +60 cm (since it is behind the lens). The distance between the object and the image is the sum of these distances, which is: (-20) + (+60) = 40 cm Therefore, the answer is 40cm.
Ibeere 5 Ìròyìn
Which of the following obeys Ohm's law?
Awọn alaye Idahun
Ohm's law states that the current passing through a conductor is directly proportional to the voltage applied across it, given the temperature and other physical conditions remain constant. Among the given options, only "all metals" obey Ohm's law. This is because metals have a linear relationship between their resistance and the applied voltage, meaning that the resistance of a metal remains constant regardless of the voltage applied. As a result, the current passing through a metal is directly proportional to the voltage applied, following Ohm's law. On the other hand, a diode, all electrolytes, and glass do not obey Ohm's law. A diode is a semiconductor that has a non-linear current-voltage relationship, and its resistance is not constant. Similarly, electrolytes and glass are non-metallic substances that do not have a linear relationship between their resistance and the applied voltage. Their resistance can change significantly with the voltage applied, and hence they do not follow Ohm's law.
Ibeere 6 Ìròyìn
A car traveled at a uniform speed of 100km/h, spends 15m moving from point A to point B along its route. The distance between A and B is
Awọn alaye Idahun
To calculate the distance between point A and point B, we can use the formula: Distance = Speed x Time where the speed is given as 100 km/h and the time is given as 15 minutes, which we need to convert to hours. 1 hour = 60 minutes, so 15 minutes = 15/60 hours = 0.25 hours. Now, we can substitute these values into the formula: Distance = 100 km/h x 0.25 h = 25 km Therefore, the distance between point A and point B is 25 km. is the correct answer.
Ibeere 7 Ìròyìn
A particle of mass M initially at rest splits into two. If one of the particles of mass M1 moves with velocity V1 , the second particle moves with velocity
Awọn alaye Idahun
When a particle of mass M splits into two, the total mass is conserved, and so the sum of the masses of the two resulting particles must be equal to M. If one of the particles of mass M1 moves with velocity V1, we can use the law of conservation of momentum to determine the velocity of the second particle. The law of conservation of momentum states that the total momentum of a system of particles remains constant if no external forces act on the system. In this case, the initial momentum of the system is zero, since the particle was initially at rest. After the particle splits, the momentum of the system is the sum of the momenta of the two resulting particles. Let's use the subscript 1 to represent the first particle of mass M1 and the subscript 2 to represent the second particle of mass M-M1. By conservation of momentum, we have: 0 = M1*V1 + (M - M1)*V2 Solving for V2, we get: V2 = -M1/M*(V1) Therefore, the second particle moves in the opposite direction with velocity -M1/M*(V1). This means that the two particles move in opposite directions, with the ratio of their velocities determined by the ratio of their masses. Option (D) in the table shows the correct answer, which is -M1/M*(V1).
Ibeere 8 Ìròyìn
Shadows and eclipses result from the
Awọn alaye Idahun
The rectilinear propagation of light means that light travels in straight lines as a wave. This can be observed in the well-defined shadows formed when an object blocks a light source and through the use of a pinhole camera.
According to Sudipa Sarkar, the formation of shadows with sharp edges demonstrates the rectilinear propagation of light, i.e. The fact that light travels in straight line. When an opaque obstacle is placed between a source of light and a screen, a shadow of the obstacle is formed on the screen. The kind of shadow depends on the size of the source of light. If it is a point source (light from a small hole), the shadow obtained is a region of total darkness, called umbra.
If an extended source of light, e.g. a bulb, is used, the umbra is surrounded by a region of partial darkness, called penumbra. The moon is seen because it reflects the sun's light. An eclipse of the moon (lunar eclipse) occurs when the earth comes between the sun and the moon and prevents some of the light from the sun from reaching the moon. In other words, the earth casts its shadow on the moon. The solar eclipse occurs when the moon comes between the sun and the earth.
Ibeere 9 Ìròyìn
Which of the following concepts is not an evidence of the particles nature of matter?
Awọn alaye Idahun
The particle nature of matter refers to the idea that matter is made up of tiny particles that are constantly moving. Diffusion, Brownian motion, and crystallization are all examples of phenomena that can be explained by the particle nature of matter. However, diffraction is not an evidence of the particle nature of matter. Diffraction is a phenomenon that occurs when waves encounter an obstacle or a slit, causing them to spread out and interfere with each other. While particles can also exhibit diffraction, this is a property of waves and is not specific to particles. In summary, diffusion, Brownian motion, and crystallization are all evidences of the particle nature of matter, but diffraction is not.
Ibeere 10 Ìròyìn
A pulley system has three pulleys in the fixed block and two in the movable block and if the pulley has an efficiency of 72%, the mechanical advantage of the system is?
Awọn alaye Idahun
To make it easier understood
MA = E × Vr/100
Vr in a pulley system is the number of pulleys and in this case we have 5 (3 and 2)
So
MA = 72 × 5 = 360/100 = 3.6
Thanks
Ibeere 11 Ìròyìn
What flows to the earth by connecting the conductor to the earth?
Awọn alaye Idahun
When a conductor is connected to the earth, electrons flow to the earth. Electrons are negatively charged particles that are present in all conductors. When a conductor is connected to the earth, it creates a path for electrons to flow from the conductor to the earth, which helps to balance the electric potential and prevent the buildup of electric charge. This flow of electrons is known as grounding and is an important safety measure in electrical systems.
Ibeere 12 Ìròyìn
Which of the following statements are TRUE of isotopes?
I. Isotopes of an element have the same chemical properties because they have the same number of electrons
II. Isotopes of elements are normally separated using physical properties
III. Isotopes of an element have the same number of protons in their nuclei
Awọn alaye Idahun
The correct answer is "I and III only". Isotopes of an element have the same number of protons in their nuclei, meaning they have the same atomic number and are therefore the same element. Because of this, they have the same chemical properties. However, isotopes of an element have different numbers of neutrons in their nuclei, which means they have different atomic masses. This is why isotopes can be separated using physical properties such as their mass or other characteristics related to their mass.
Ibeere 13 Ìròyìn
The pitch of an acoustic device can be increased by
Awọn alaye Idahun
The pitch of an acoustic device refers to the perceived highness or lowness of a sound, and is determined by the frequency of the sound wave. To increase the pitch of an acoustic device, you need to increase the frequency of the sound wave. This can be done by increasing the number of vibrations per second that the device produces. So, the correct answer is to "increase the frequency".
Ibeere 14 Ìròyìn
The amount of heat needed to raise the temperature of 10kg of Copper by 1K is its
Awọn alaye Idahun
The correct answer is "specific heat capacity." Specific heat capacity is a measure of how much heat energy is required to raise the temperature of a certain amount of a substance by 1 degree Celsius (or 1 Kelvin, which is the same size as 1 degree Celsius). In this case, we are dealing with 10kg of copper, so we need to know the specific heat capacity of copper. The specific heat capacity of copper is 0.385 J/g°C (joules per gram per degree Celsius). To calculate the amount of heat needed to raise the temperature of 10kg of copper by 1K, we need to know the total mass of copper (10kg) and the specific heat capacity of copper (0.385 J/g°C). The formula for calculating the amount of heat energy required is: Heat energy = mass x specific heat capacity x change in temperature Since we want to raise the temperature by 1K, the change in temperature is 1K. So, the amount of heat energy required to raise the temperature of 10kg of copper by 1K is: Heat energy = 10kg x 0.385 J/g°C x 1K = 3.85 kJ Therefore, it takes 3.85 kilojoules (kJ) of heat energy to raise the temperature of 10kg of copper by 1K.
Ibeere 15 Ìròyìn
Which of the following has the lowest internal resistance when new?
Awọn alaye Idahun
Among the given options, the Accumulator has the lowest internal resistance when new. Internal resistance is the resistance that a battery or cell provides to the flow of electric current within itself. Lower internal resistance means that the battery can supply more current to an external circuit without losing much of its own energy as heat. An Accumulator, also known as a rechargeable battery, is designed to be charged and discharged multiple times. It has a relatively low internal resistance when new, meaning it can provide a higher current than the other cells listed while wasting less energy internally as heat. A Leclanche cell and Daniell cell are primary cells, meaning they are designed to be used once and discarded. They have higher internal resistance compared to the accumulator, which limits their ability to supply high currents. A Torch battery, also known as a dry cell, is also a primary cell and has a higher internal resistance than the accumulator. It is commonly used in small electronic devices and has a longer shelf life than Leclanche and Daniell cells. In summary, an Accumulator has the lowest internal resistance when new, which makes it an ideal choice for applications requiring high current delivery such as electric vehicles, power tools, and renewable energy systems.
Ibeere 16 Ìròyìn
A narrow beam of white light can be split up into different colours by a glass prism. The correct explanation is that
Awọn alaye Idahun
The correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. White light is made up of different colors with different wavelengths, ranging from violet to red. When a narrow beam of white light passes through a glass prism, the different colors refract at slightly different angles due to the fact that their wavelengths are different. This causes the different colors to spread out and form a spectrum. The amount of refraction that occurs depends on the speed of light in the medium. Different colors of light have different speeds in glass due to the fact that their wavelengths are different. This means that they will refract at different angles as they pass through the glass prism, causing them to spread out. So, the correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. Therefore, is the correct explanation. is incorrect because it describes what white light is made up of, but does not explain how it is split up into colors by a prism. is incorrect because a prism does not have all the colors of white light, but rather it separates the colors that are already present in white light. is incorrect because total internal reflection occurs when light is completely reflected back into the same medium, which is not what happens when white light is split up by a prism.
Ibeere 17 Ìròyìn
The inner diameter of a small test tube can be measured accurately using a
Awọn alaye Idahun
A vernier caliper is a measuring device used to precisely measure linear dimensions. It is a very useful tool to use when measuring the diameter of a round objects like cylinders because the measuring jaws can be secured on either side of the circumference.
Vernier calipers have both a fixed main scale and a moving vernier scale. The main scale is graduated in either millimetres or tenths of an inch. The vernier scale allows much more precise readings to be taken (usually to the nearest 0.02mm or 0.001 inch) in comparison to a standard ruler (which only measures to th nearest 1mm or 0.25 inch).
The vernier scale was invented by French mathematician Pierre Vernier in 1631. As part of the vernier caliper, it is used together with the main scale, and helps to provide very precise measurements. Vernier calipers usually show either imperial or metric measurements, but some measure in both.
Ibeere 18 Ìròyìn
An object moves in a circular path of radius 0.5m with a speed of 1ms−1 . What is its angular velocity?
Awọn alaye Idahun
Angular velocity is a measure of how fast an object is rotating around a center point. It's usually measured in radians per second (rad/s). To calculate angular velocity, we use the formula: angular velocity = linear velocity / radius. In this case, the linear velocity is 1 m/s, and the radius is 0.5 m. So, the angular velocity would be: 1 m/s / 0.5 m = 2 rad/s Therefore, the answer is 2 rad/s or 2rads^-1
Ibeere 19 Ìròyìn
An electric heating coil rated at 1KW is used to heat 2kg of water for 2 minutes. The initial water temperature is 30o C. Taking the specific heat of the water as 4,000Jkg −1 and neglecting that of the container, the final water temperature is
Awọn alaye Idahun
To determine the final temperature of the water, we can use the formula: Q = mcΔT where Q is the heat transferred, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. We know that the power of the electric heating coil is 1KW, which means it transfers 1000 Joules of energy per second. In 2 minutes, or 120 seconds, it transfers 120,000 Joules of energy to the water. The mass of the water is given as 2kg and the specific heat capacity of water is 4000 J/kg°C. We can assume that the initial temperature of the water is 30°C. Using the formula, we can solve for the change in temperature: 120,000 J = (2 kg)(4000 J/kg°C)(ΔT) ΔT = 15°C Therefore, the final temperature of the water is 30°C + 15°C = 45°C. So, the final water temperature is 45.0oC.
Ibeere 20 Ìròyìn
A 40W instrument has a resistance 90 Ohms. On what voltage should it be operated normally
Awọn alaye Idahun
To calculate the voltage needed for a 40W instrument with a resistance of 90 Ohms, we can use the formula: Voltage = √(Power x Resistance) Plugging in the given values, we get: Voltage = √(40W x 90Ω) Voltage = √(3600) Voltage = 60V Therefore, the instrument should be operated at 60V to generate 40W of power with a resistance of 90 Ohms. The correct answer is, 60V.
Ibeere 21 Ìròyìn
If the fraction of the atoms of a radioactive material left after 120years is 164 , what is the half-life of the material? 164
Awọn alaye Idahun
The half-life of a radioactive material is the time it takes for half of the atoms in a sample to decay. The fraction of atoms left after a certain number of half-lives can be calculated using the formula: fraction left = (1/2)^(number of half-lives) Let's use this formula to solve the problem. We know that the fraction of atoms left after 120 years is 1/64, which means that: (1/2)^(number of half-lives) = 1/64 To solve for the number of half-lives, we can take the logarithm of both sides: log[(1/2)^(number of half-lives)] = log(1/64) Using the rule that log(a^b) = b*log(a), we can simplify the left side of the equation: number of half-lives * log(1/2) = log(1/64) Dividing both sides by log(1/2), we get: number of half-lives = log(1/64) / log(1/2) Using a calculator or the change of base formula, we can evaluate this expression: number of half-lives = 6 Therefore, the half-life of the material is 120/6 = 20 years.
Ibeere 22 Ìròyìn
One of the features of the fission process is that
Awọn alaye Idahun
The fission process refers to the splitting of an atomic nucleus into two or more smaller nuclei. One of the key features of the fission process is that it can lead to a chain reaction, where the neutrons released during fission can go on to trigger additional fission reactions. This chain reaction can produce a large amount of energy, as is the case in nuclear power plants and nuclear weapons. Another feature of the fission process is that it typically produces radioactive products. These products can remain radioactive for a long time, which is why there are concerns about the safe disposal of nuclear waste. Additionally, the fission process typically releases neutrons, which can go on to cause further fission reactions. This neutron release is an important aspect of the chain reaction mentioned earlier. Finally, the fission process is accompanied by a small loss of mass, which is converted into energy according to Einstein's famous equation E=mc². This loss of mass is what allows the large amount of energy to be released during a fission reaction.
Ibeere 23 Ìròyìn
A beam of light is incident from air to water at an angle of 300. Find the angle of refraction if the refractive index of water is 4/3
Awọn alaye Idahun
X = 43
r = ?
Shell?s law:. 7 = Sin20Sinr0
Vg
= Sin300Sinr0
Sinr0
= 3Sin3004
Sin r0
= 0.375
R o
= Sin-1 (0.375)
R o
= 22.02 o
R o
= 22 o
Ibeere 24 Ìròyìn
The photo cell works on the principle of the
Awọn alaye Idahun
The photocell works on the principle of the emission of electrons by incident radiation. In simple terms, a photocell is a device that converts light energy into electrical energy. It does this by using a material (such as silicon) that releases electrons when it is exposed to light. These electrons can then be collected and used to produce a current, which can be used to power an electrical device. The more light that hits the photocell, the more electrons are released and the greater the electrical current.
Ibeere 25 Ìròyìn
The critical angle for light travelling from a transparent medium to air s measured as 340. The refractive index of the medium is
Awọn alaye Idahun
The critical angle is the angle of incidence at which light is just able to pass through the interface between two media and not reflect back. When light travels from a medium with a higher refractive index to a medium with a lower refractive index, it slows down and bends towards the normal. If the angle of incidence is increased, the light will eventually reach a point where it will not be able to escape the higher index medium and will be totally reflected back. This is the critical angle. The formula for the critical angle can be expressed as follows: sin(θc) = n2/n1 Where θc is the critical angle, n1 is the refractive index of the first medium, and n2 is the refractive index of the second medium. In this case, the first medium is the transparent medium and the second medium is air, which has a refractive index of approximately 1. By substituting the value of sin(θc) with the value of 340, and n2 with 1, we can solve for n1. sin(340) = n1/1 n1 = 1/sin(340) The value of n1 calculated using this formula is approximately 1.79, which means that the refractive index of the transparent medium is 1.79.
Ibeere 26 Ìròyìn
Temperature is the property of a body which is proportional to the ____.
Awọn alaye Idahun
Temperature is proportional to the average kinetic energy of the molecules in a body. This means that as the average kinetic energy of the molecules increases, so does the temperature. Think about it like this: the hotter an object, the more energy its molecules have. This energy is what makes the molecules move faster, and therefore, the temperature of the object increases. The average kinetic energy of the molecules is a better measure of temperature than the maximum speed of the molecules because temperature is a measure of the overall energy distribution, not just the energy of a single molecule.
Ibeere 27 Ìròyìn
A man walks 1km due east and then 1 km due north. His displacement is
Awọn alaye Idahun
The man first walks 1 km due east, which means he has moved 1 km horizontally to the right of his starting point. Then, he walks 1 km due north, which means he has moved 1 km vertically upwards from his previous position. To find his displacement, we need to draw a straight line from his starting point to his final position, which represents the shortest distance between the two points. This line is called the displacement vector. We can use the Pythagorean theorem to calculate the length of the displacement vector. The horizontal and vertical distances are the two legs of a right-angled triangle, and the hypotenuse is the length of the displacement vector. Using the Pythagorean theorem, we get: displacement = √((1 km)^2 + (1 km)^2) = √2 km The direction of the displacement vector is the angle between the displacement vector and the due north direction. We can find this angle using trigonometry. The tangent of the angle is the ratio of the horizontal distance to the vertical distance: tan(θ) = (1 km) / (1 km) = 1 Using a calculator, we can find that the angle is 45°. Therefore, the man's displacement is √2 km in the direction N 45° E. So, the correct answer is √2km N 45°E.
Ibeere 28 Ìròyìn
When a known standard resistor of 2.0 is connected to the 0.0cm end of a meter bridge, the balance point is found to be at 55.0cm. What is the value of the unknown resistor?
Awọn alaye Idahun
A meter bridge is an instrument used to measure the unknown resistance of a conductor. The meter bridge consists of a long resistance wire AB of uniform cross-sectional area and a battery of known voltage connected across its ends. A galvanometer is connected across a point C on the wire, which is called the null point or balance point.
When a known standard resistor of 2.0 ohms is connected to the 0.0cm end of the meter bridge wire, the balance point is found to be at 55.0cm. This means that the resistance of the unknown resistor is equal to the resistance of a portion of the meter bridge wire between the 0.0cm and the 55.0cm point.
To find the value of the unknown resistor, we can use the principle of the Wheatstone bridge, which states that the ratio of the resistances in the two arms of a balanced bridge is equal.
Let R be the resistance of the unknown resistor, then we have:
R/2.0 = (100 - 55.0)/55.0
Simplifying this expression, we get:
R = 2.0 x (100 - 55.0)/55.0
R = 1.64 ohms
Therefore, the value of the unknown resistor is 1.64 ohms.
Ibeere 29 Ìròyìn
What effort will a machine of efficiency 90% apply to a load of 180N if its efforts arm is twice as long as its load arm?
Awọn alaye Idahun
Ibeere 30 Ìròyìn
The linear expansivity of brass is 2 x 10?5
C?1
. If the volume of a piece of brass is 15.00cm at 0°C, what is the volume at 100°C
Awọn alaye Idahun
The linear expansivity of brass is given as 2 x 10^-5 /°C. This means that for every 1°C increase in temperature, the brass expands by 2 x 10^-5 of its original size. To find the new volume of the brass at 100°C, we need to take into account the expansion in all three dimensions (length, width, and height). Since the expansivity given is for length only, we need to find the expansivity in all three dimensions by multiplying it by 3. The expansivity in all three dimensions is: 3 x (2 x 10^-5 /°C) = 6 x 10^-5 /°C To find the new volume, we can use the formula: Vf = Vi (1 + αΔT) where Vf is the final volume, Vi is the initial volume, α is the expansivity in all three dimensions, and ΔT is the change in temperature. Plugging in the values, we get: Vf = 15.00 cm3 (1 + (6 x 10^-5 /°C) x (100°C - 0°C)) Vf = 15.09 cm3 Therefore, the volume of the brass at 100°C is 15.09 cm3.
Ibeere 31 Ìròyìn
Water of mass 150g at 60o c is added to 300g of water at 20o c and the mixture is well stirred. Calculate the temperature of the mixture.(neglect heat losses to the surroundings)
Awọn alaye Idahun
To solve this problem, we can use the principle of conservation of energy, which states that energy cannot be created or destroyed, only transferred or converted from one form to another. In this case, the energy transferred is in the form of heat. We can use the formula: Q = m*c*(ΔT) where Q is the heat transferred, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. First, we can calculate the heat transferred from the hot water to the cold water: Q1 = 150g * 4.18 J/(g°C) * (60°C - T) Q1 = 627 * (60 - T) where T is the temperature of the mixture. Next, we can calculate the heat transferred from the cold water to reach the final temperature of the mixture: Q2 = 300g * 4.18 J/(g°C) * (T - 20°C) Q2 = 1254 * (T - 20) Since the heat transferred between the two water samples must be equal, we can set Q1 equal to Q2 and solve for T: 627 * (60 - T) = 1254 * (T - 20) 37620 - 627T = 1254T - 25080 1881T = 62760 T = 33.4°C Therefore, the temperature of the mixture is approximately 33°C. Answer: 33°C
Ibeere 32 Ìròyìn
A boy receives the echo of his clap reflected by a nearby hill 0.8s later. If the speed of sound in air is 3.40ms−1 , how far is he from the hill?
Awọn alaye Idahun
The speed of sound in air is given as 3.40 m/s. The echo of the clap is heard 0.8 seconds after it was produced, which means it traveled to the hill and back. The time taken for sound to travel to the hill is half of the time taken for it to travel to and from the hill. Therefore, the time taken for sound to travel to the hill is 0.8/2 = 0.4 seconds. We can use the formula: distance = speed x time to calculate the distance between the boy and the hill. distance = speed of sound x time taken for sound to travel to the hill distance = 3.40 m/s x 0.4 s distance = 1.36 m Therefore, the distance between the boy and the hill is 1.36 meters. However, the answer options provided are in meters and are significantly larger than 1.36 meters. It is possible that the speed of sound provided in the question is incorrect or the answer options are incorrect.
Ibeere 33 Ìròyìn
The friction which exist between two layers of liquid in relative motion is called
Awọn alaye Idahun
The correct answer is "Viscosity". Viscosity is the property of a fluid that describes its resistance to flow. When two layers of liquid are in relative motion, the viscosity of the liquid causes friction between the layers. This friction creates a resistance to the movement of one layer past the other. The greater the viscosity of the liquid, the greater the friction and the more difficult it is for the layers to move past each other. This property is important in many industrial and natural processes, such as the flow of oil in pipelines or the movement of blood through the human body.
Ibeere 34 Ìròyìn
What is the resultant resistance of the circuit in the image shown?
Awọn alaye Idahun
Formulae resistance in parallel
= 1/R = 1/R1 +1/R2
1/R = 1/2 +1/2 = 1
Resistance are now in series
R = 1 + 3 + 4
= 8 ohms
Ibeere 35 Ìròyìn
Which of the following best describes the energy changes which take place when a steam engine drives a generator which lights a lamp?
Awọn alaye Idahun
The energy changes that take place when a steam engine drives a generator which lights a lamp can be described as: Heat energy from burning fuel is used to create steam in the boiler of the steam engine. This steam is then used to drive the turbine, which generates kinetic energy as it spins. The kinetic energy is transferred to the generator, which converts it into electrical energy (electricity). The electricity then flows through the wires to the lamp, where it is converted back into light energy, which is what we see. Therefore, the correct option would be: Heat ----> Kinetic ----> Electricity ----> Light
Ibeere 36 Ìròyìn
Convex mirrors are used as driving mirrors because images formed are
Awọn alaye Idahun
Convex mirrors are used as driving mirrors because the images formed by them are "erect, virtual, and diminished." Let me explain what these terms mean: - Erect: It means that the image appears upright, just like the actual object. This is important for a driving mirror because it allows the driver to perceive the correct orientation of the vehicles behind them. - Virtual: It means that the image appears to be behind the mirror, and not in front of it. This is also important for a driving mirror because it allows the driver to see a wider field of view without having to turn their head. - Diminished: It means that the image is smaller than the actual object. This is important for a driving mirror because it allows the driver to see a larger area behind them while still fitting it within the mirror's frame. Overall, these properties make convex mirrors ideal for use as driving mirrors as they provide the driver with an accurate view of the vehicles behind them without sacrificing their field of view.
Ibeere 37 Ìròyìn
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Awọn alaye Idahun
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Ibeere 38 Ìròyìn
The tendency of a body to remain at rest when a force is applied to it is called.
Awọn alaye Idahun
The tendency of a body to remain at rest or to continue moving with a constant velocity (in a straight line at a constant speed) when no force is acting on it is called inertia. Inertia is a property of matter, and the amount of inertia depends on the mass of an object. Inertia can also be thought of as a resistance to changes in motion, meaning that an object at rest will tend to stay at rest, and an object in motion will tend to stay in motion unless acted upon by an external force. This property of inertia is what makes it difficult to start, stop, or change the direction of motion of an object. The force required to overcome the inertia of an object depends on the mass of the object and the magnitude of the acceleration desired. Therefore, the greater the mass of an object, the greater its inertia, and the more force required to change its motion.
Ibeere 39 Ìròyìn
If the focal length of a camera is 20cm, the distance from the film at which the lens must be set to produce a sharp image of 100cm away is
Awọn alaye Idahun
F = 20cm
V = 100cm
U = ?
1U
+ 1V
= 1F
120
+ 1100
= 1F
5+1100
= 1F
F = 1006
= 16.7cm
= 17cm
Ibeere 40 Ìròyìn
Palm oil from a bottle flows out more easily after it has been heated because the
Awọn alaye Idahun
Molecules cannot be given energy during the heating and the molecules of oil cannot force each other out
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?