Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
Which of the following is a characteristic of cells related to irritability?
Awọn alaye Idahun
A characteristic of cells related to irritability is the ability to respond to stimuli.
This means that cells can detect changes in their environment and react accordingly. Cells have specialized structures called receptors that can detect different types of stimuli such as light, temperature, chemicals, or pressure.
When a stimulus is detected, the cell can initiate a series of events to respond to it. This response can involve various cellular processes such as changing the cell's shape, releasing chemicals, or activating specific genes to produce proteins. For example, when your skin cells are exposed to heat, the receptors in those cells detect the change in temperature.
In response, the cells generate signals that travel to the brain, allowing you to feel the heat and take appropriate action like moving your hand away from the source of heat.
In summary, the ability to respond to stimuli is an important characteristic of cells related to irritability because it allows them to interact with their surroundings and adapt to changes in their environment.
Ibeere 2 Ìròyìn
Ecological succession refers to
Awọn alaye Idahun
Ecological succession refers to the gradual and predictable change in a community over time. It is a process in which an ecosystem or community goes through a series of changes, from one stable state to another, in a continuous and sequential manner.
During ecological succession, new species gradually replace existing ones in a given area. This change can occur due to various factors, such as natural events like wildfires or human activities like deforestation. These disturbances create opportunities for new species to colonize the area and establish themselves.
The process of ecological succession can be divided into two main types: primary succession and secondary succession. Primary succession occurs in areas that are devoid of any life, such as bare rock or volcanic lava. Here, the process starts with the colonization of pioneer species, like lichens and mosses, which break down the rock and create soil. This allows other plants and organisms to gradually establish themselves.
On the other hand, secondary succession occurs in areas that have been previously occupied by a community, but have experienced some form of disturbance, such as a forest fire or a clearing. In this case, the process starts with the re-establishment of species that were present before the disturbance.
Overall, ecological succession is an essential process that allows communities to adapt and change over time. It plays a crucial role in maintaining the balance and biodiversity of ecosystems. By understanding ecological succession, we can better comprehend how different species interact and how ecosystems respond to environmental changes.
Ibeere 3 Ìròyìn
What are the primary products of photosynthesis?
Awọn alaye Idahun
The primary products of photosynthesis are **glucose and oxygen**. During photosynthesis, plants use sunlight, carbon dioxide, and water to produce glucose, which is a type of sugar. This process occurs in special structures called chloroplasts, which are found in the cells of plants. Here's how it works: 1. **Sunlight**: Plants capture sunlight using a pigment called chlorophyll, which is located in the chloroplasts. This chlorophyll absorbs the energy from sunlight. 2. **Carbon Dioxide**: Plants take in carbon dioxide from the atmosphere through tiny pores called stomata, which are present on their leaves. Carbon dioxide is a gas that is released by animals and is also present in the air we breathe out. 3. **Water**: Plants absorb water from the soil through their roots. This water is then transported up through the stems to the leaves. 4. **Photosynthesis**: Inside the chloroplasts, the energy from sunlight is used to convert carbon dioxide and water into glucose and oxygen. This process involves a series of chemical reactions that occur in multiple steps. The glucose produced during photosynthesis serves as a source of energy for the plant. It can be used immediately, stored as starch for later use, or used to make other compounds needed by the plant. The oxygen produced as a byproduct of photosynthesis is released into the atmosphere through the stomata. It is a vital component for most living organisms, including animals, as we need oxygen to survive and carry out cellular respiration.
Ibeere 4 Ìròyìn
Which of the following blood vessels carries oxygenated blood away from the heart?
Awọn alaye Idahun
The blood vessel that carries oxygenated blood away from the heart is called an **artery**. Arteries are like highways that transport blood from the heart to different parts of the body. They have thick and elastic walls to handle the pressure exerted by the pumping heart. When blood leaves the heart, it is rich in oxygen and nutrients, which it carries to the body's tissues for them to function properly. Oxygen is crucial for various bodily functions, such as energy production. Therefore, it is important that the oxygenated blood reaches all parts of the body. Arteries have a bright red color because of the oxygen-rich blood they carry. As the blood travels through the arteries, it branches out into smaller vessels called arterioles, which further divide into tiny blood vessels known as capillaries. Capillaries are very thin and narrow, allowing them to reach almost every cell in the body. Once the oxygen from the blood is delivered to the body's tissues through the capillaries, the deoxygenated blood containing waste products, such as carbon dioxide, is collected by tiny veins called venules. Venules join together to form larger veins, which carry the deoxygenated blood back to the heart. To summarize, arteries carry oxygenated blood away from the heart to the body's tissues, while veins carry deoxygenated blood back to the heart. Arteries are like highways that deliver the necessary oxygen and nutrients to keep our bodies functioning properly.
Ibeere 5 Ìròyìn
What is the term used to describe the maximum number of individuals of a species that an environment can support indefinitely?
Awọn alaye Idahun
The correct term used to describe the maximum number of individuals of a species that an environment can support indefinitely is **carrying capacity**. Carrying capacity refers to the maximum number of individuals that a particular ecosystem or habitat can sustain, taking into account the available resources such as food, water, shelter, and space. It is the point at which the environment's resources are sufficient to meet the needs of the population without causing detrimental effects. As an analogy, imagine a room with a limited amount of chairs and enough food for a certain number of people. The carrying capacity of the room would be the maximum number of individuals that can comfortably fit in the space and be adequately fed without any negative consequences like overcrowding or resource depletion. In ecological terms, populations tend to grow when conditions are favorable, such as abundant resources and few limiting factors. However, as the population increases, resources become more limited, and competition among individuals for these resources intensifies. At some point, the population reaches its carrying capacity, where the available resources cannot support any additional individuals. Carrying capacity is crucial because it determines the balance between population size and available resources in an ecosystem. By understanding and managing the carrying capacity of a habitat, we can help maintain a healthy and sustainable environment for both the species and the ecosystem as a whole.
Ibeere 6 Ìròyìn
Which of the following mechanisms is responsible for providing support in plants?
Awọn alaye Idahun
Cell walls and turgor pressure are the mechanisms responsible for providing support in plants. Unlike animals that have muscles and skeletons for support, plants have cell walls and turgor pressure.
Cell walls: Plant cells have strong and rigid cell walls made of cellulose. These cell walls provide structural support to the entire plant. They help plants maintain their shape and prevent them from collapsing under their own weight. The cell walls also protect the delicate cell membrane and organelles inside the cell.
Turgor pressure: Within plant cells, there is a high concentration of water, and this water creates pressure against the cell walls. This pressure is called turgor pressure. Turgor pressure provides rigidity to plant cells, which in turn helps support the entire plant. When plant cells are well hydrated, turgor pressure keeps them turgid and upright, maintaining the shape and structure of the plant.
Together, the cell walls and turgor pressure work hand in hand to provide support to plants. The cell walls provide a strong framework, while turgor pressure maintains the structural integrity of individual cells.
This combination allows plants to stand upright and resist external forces such as wind or gravity.
To recap, while animals rely on muscles and skeletons for support, plants utilize cell walls and turgor pressure to provide their structural support.
Ibeere 7 Ìròyìn
Which organs are part of the alimentary canal in the human digestive system?
Awọn alaye Idahun
The organs that are part of the alimentary canal in the human digestive system are the **esophagus, stomach, pancreas, and small intestine**. **Esophagus**: It is a muscular tube that connects the mouth to the stomach. Its role is to transport food from the mouth to the stomach through a process called peristalsis, which is the contraction and relaxation of the muscles in the esophagus. **Stomach**: The stomach is a J-shaped organ located below your diaphragm in the upper-left side of your abdomen. It is an important part of the digestive system because it breaks down food into a liquid mixture called chyme. The stomach has strong muscles that churn and mix the food with digestive juices that contain acids and enzymes. **Pancreas**: The pancreas is a long, flat gland located behind the stomach. It has both endocrine and exocrine functions. In terms of digestion, the pancreas releases digestive enzymes into the small intestine to help break down carbohydrates, fats, and proteins. **Small Intestine**: The small intestine is a long, coiled tube that is the major site of digestion and absorption of nutrients. It is divided into three sections: the duodenum, jejunum, and ileum. The lining of the small intestine has tiny finger-like projections called villi, which increase its surface area for efficient absorption of nutrients into the bloodstream. It's important to note that while the salivary glands, tongue, pharynx, large intestine, appendix, and rectum are all important parts of the digestive system, they are not part of the alimentary canal. The salivary glands produce saliva, the tongue helps with chewing and swallowing, and the pharynx is the pathway for food and air. The large intestine, appendix, and rectum are mainly involved in the absorption of water, electrolytes, and the elimination of solid waste. To summarize, the organs that are part of the alimentary canal in the human digestive system are the **esophagus, stomach, pancreas, and small intestine**. These organs work together to break down food, absorb nutrients, and eliminate waste.
Ibeere 8 Ìròyìn
Which of the following statements is true regarding sexual reproduction in organisms?
Awọn alaye Idahun
Sexual reproduction in organisms involves the fusion of gametes from two parents, resulting in offspring with genetic variation. This means that the offspring inherit traits from both parents, leading to a combination of their genetic material. This process starts with the production of specialized cells called gametes by each parent. These gametes, such as sperms and eggs, contain half the number of chromosomes as other cells in the body. When two gametes fuse during sexual reproduction, they form a new cell called a zygote. The zygote then develops into an offspring with a unique combination of genes from both parents. This genetic variation is beneficial to the survival of a species. It allows for adaptation to changing environments. For example, if one parent has a genetic trait that provides resistance to a certain disease, there is a chance that the offspring may inherit that trait and be better equipped to survive if they encounter the same disease. In contrast, asexual reproduction involves the production of offspring through a single parent, resulting in genetically identical offspring. This can occur through processes such as budding, fragmentation, or binary fission. In asexual reproduction, there is no genetic variation, as the offspring are essentially clones of the parent. So, the true statement regarding sexual reproduction in organisms is that it involves the fusion of gametes from two parents, resulting in offspring with genetic variation.
Ibeere 9 Ìròyìn
Which of the following describes the inheritance of traits from parents to offspring
Awọn alaye Idahun
Genetics describes the inheritance of traits from parents to offspring. This refers to the passing down of genetic information from one generation to the next.
Genes are segments of DNA that contain instructions for specific traits. Offspring inherit a combination of genes from both parents, which determines their characteristics. For example, genetic information determines traits such as eye color, hair color, height, and many others.
The process of inheritance occurs during reproduction. Sexual reproduction, where genetic material from two parents combines, results in offspring with a mix of traits from both parents. This blending of genetic information gives rise to unique individuals within a species.
The study of genetics helps us understand how traits are passed down, how certain traits can be dominant or recessive, and how variations and mutations can occur. Understanding genetics is essential in many areas of science, from medicine and agriculture to evolutionary studies. While evolution, adaptation, and natural selection are all related concepts, they deal more with the changes and variations in traits within a population over time.
Genetics, on the other hand, focuses specifically on the mechanisms of inheritance and the passing down of traits from one generation to the next.
Ibeere 10 Ìròyìn
Which of the following organs is primarily responsible for excretion in humans?
Awọn alaye Idahun
The organ primarily responsible for excretion in humans is the **kidneys**. The kidneys are two bean-shaped organs located in the lower back on either side of the spine. These remarkable organs perform the vital function of filtering waste products and excess fluids from the blood, which are then eliminated from the body as urine. Here is a simplified explanation of how the kidneys carry out the excretion process: 1. **Filtration**: Every day, the kidneys filter around 200 liters of blood, separating waste materials such as urea, uric acid, and excess salts from the useful substances like water, glucose, and electrolytes. This filtration occurs in tiny structures within the kidneys called nephrons. 2. **Reabsorption**: After filtration, the kidneys reabsorb the useful substances, such as water and essential nutrients, back into the bloodstream. This allows the body to retain vital substances while eliminating waste. 3. **Secretion**: In addition to filtration and reabsorption, the kidneys also secrete certain waste products directly into the urine. These include substances like hydrogen ions and drugs. 4. **Concentration**: The kidneys also have the important task of maintaining the body's water balance. They regulate the concentration of urine based on the body's hydration needs. When we are dehydrated, the kidneys conserve water and produce concentrated urine. Conversely, when we are well-hydrated, the kidneys produce more dilute urine. The kidneys work closely with other organs involved in excretion, such as the liver and lungs, to maintain overall body balance. While the liver helps process and eliminate some waste products, and the lungs expel carbon dioxide, the kidneys are primarily responsible for the excretion of waste materials, particularly urea and other nitrogenous compounds. In conclusion, the **kidneys** play a crucial role in excretion by filtering waste products and excess fluids from the blood, while maintaining the body's water balance.
Ibeere 11 Ìròyìn
Which of the following is a male reproductive organ in humans?
Awọn alaye Idahun
The male reproductive organ in humans is the Testis.
The testis is responsible for producing sperm, which are the male reproductive cells. These sperms are needed for the process of fertilization, which occurs when a sperm cell fuses with an egg cell to form a new individual.
The testis also produces hormones, primarily testosterone. This hormone is responsible for the development and maintenance of male secondary sexual characteristics, such as facial hair, deepening of the voice, and muscle growth. The testis is located outside the body within a sac called the scrotum.
This is because sperm production occurs at a temperature slightly lower than the body temperature. The testis contains tiny coiled tubes called seminiferous tubules, where the sperm are produced. These sperm cells then mature and are stored in a structure called the epididymis until ejaculation.
In summary, the testis is the male reproductive organ responsible for producing sperm and testosterone, which are vital for reproduction and the development of male sexual characteristics.
Ibeere 12 Ìròyìn
Which type of reproduction involves the fusion of gametes from two parents?
Awọn alaye Idahun
The type of reproduction that involves the fusion of gametes from two parents is sexual reproduction.
In this process, two parents contribute their genetic material to produce offspring that inherits traits from both parents. Sexual reproduction involves the fusion of two specialized cells called gametes.
Gametes are produced by the parents and they contain half of the genetic information of each parent. In most animals, the male parent produces small motile gametes called sperm, while the female parent produces larger non-motile gametes called eggs. During sexual reproduction, the sperm and egg unite in a process called fertilization. This fusion forms a new cell called a zygote.
The zygote then develops into an offspring with a unique combination of genetic traits inherited from both parents. The process of sexual reproduction introduces genetic diversity among offspring.
This genetic diversity is important for the survival and adaptation of species to changing environments. It allows for the combination and recombination of genetic traits, enhancing the chances of producing offspring with advantageous characteristics.
Overall, sexual reproduction is a complex and fascinating process that involves the fusion of gametes from two parents, leading to the creation of genetically diverse offspring.
Ibeere 13 Ìròyìn
What is the primary function of the liver in the human body?
Awọn alaye Idahun
The primary function of the liver in the human body is **detoxification and metabolism** of various substances. The liver acts as a filter, breaking down and removing toxins such as alcohol, drugs, and other waste products from the bloodstream. It also plays a crucial role in the metabolism of nutrients, including carbohydrates, proteins, and fats. Furthermore, the liver produces bile, a substance that helps in the digestion and absorption of fats. It also stores essential vitamins and minerals, such as vitamin A, D, and B12, as well as iron and copper. In addition to its detoxification and metabolic functions, the liver is involved in the production of blood-clotting proteins and the breakdown of old red blood cells. Overall, the liver is an incredible organ that carries out numerous vital functions to keep our body running smoothly and in a healthy state.
Ibeere 14 Ìròyìn
Which of the following is an evolutionary trend commonly observed in organisms?
Awọn alaye Idahun
Increased genetic diversity within populations is an evolutionary trend commonly observed in organisms. Evolution is the process by which species change and adapt over time.
One important factor in evolution is genetic diversity, which refers to the variety of genetic traits within a population. Genetic diversity is beneficial to a population because it increases its chances of survival.
When individuals within a population have different genetic traits, they may respond differently to changes in the environment. This variation allows some individuals to better adapt to changing conditions, ensuring the survival of the population as a whole.
Over time, species can develop new traits and characteristics through genetic mutations, recombination, and other mechanisms. These changes can lead to increased genetic diversity within a population.
Increased genetic diversity can also occur through immigration and gene flow, when individuals from other populations bring new genes into a population.
This can further enhance the genetic variety within a group. In summary, increased genetic diversity within populations is an evolutionary trend commonly observed in organisms.
It allows for better adaptation to changing environments and increased chances of survival for a population in the long run.
Ibeere 15 Ìròyìn
Which of the following plant tissues is responsible for transporting water and nutrients from the roots to the rest of the plant?
Awọn alaye Idahun
The plant tissue responsible for transporting water and nutrients from the roots to the rest of the plant is the **xylem**. Xylem is like the "plumbing system" of the plant. It is made up of long, hollow tubes called xylem vessels that run vertically from the roots to the leaves. These xylem vessels are stacked on top of each other, forming a continuous network throughout the plant. When water is absorbed by the roots, it travels through the xylem vessels upwards towards the rest of the plant. This process is called **transpiration**. Transpiration is the evaporation of water from the leaves, which creates a "pull" or suction force that helps to draw water up through the xylem. In addition to water, the xylem also transports nutrients, such as minerals and dissolved sugars, from the roots to the other parts of the plant. These nutrients are dissolved in water and are carried along with it as it moves through the xylem vessels. So, to summarize, the xylem is the plant tissue responsible for transporting water and nutrients from the roots to the rest of the plant. It acts like a "plumbing system" and uses transpiration to move water and dissolved nutrients upwards.
Ibeere 16 Ìròyìn
The membrane around the vacuole is known as
Awọn alaye Idahun
The membrane around the vacuole is known as the **tonoplast**. The tonoplast is a special membrane that surrounds the vacuole, which is a large storage sac found in plant cells. It separates the contents of the vacuole from the rest of the cell. Think of the tonoplast like a protective bubble around the vacuole. It controls what goes in and out of the vacuole, just like a fence controls who can enter or exit a yard. The tonoplast is made up of proteins and lipids, which are like the building blocks that give it structure and function. One of the important functions of the tonoplast is to regulate the movement of water and other molecules in and out of the vacuole. It acts like a gatekeeper, allowing certain substances to enter or leave the vacuole while keeping others out. This helps the cell maintain its internal balance and prevents harmful substances from entering. Additionally, the tonoplast plays a role in maintaining the shape and stability of the vacuole. It helps the vacuole maintain its structure and prevents it from collapsing under pressure. So, to summarize, the membrane around the vacuole is called the tonoplast, and it serves as a protective barrier, regulates the movement of molecules, and helps maintain the shape of the vacuole.
Ibeere 17 Ìròyìn
Which of the following represents the correct hierarchical organization of life from the smallest to the largest scale?
Awọn alaye Idahun
The correct hierarchical organization of life from the smallest to the largest scale is: **Cells, tissues, organs, organisms, populations, communities, ecosystems**. Let's break it down: - **Cells**: Cells are the basic units of life. They are the smallest structural and functional units that can carry out all the necessary functions of living organisms. - **Tissues**: Cells of similar types come together and perform specific functions, forming tissues. Tissues are groups of cells that work together to carry out a particular function in the body. - **Organs**: Organs are made up of different types of tissues that work together to perform a specific function. For example, the heart is an organ made up of cardiac muscle tissue, blood vessels, and connective tissue. - **Organisms**: Organisms are individual living beings consisting of multiple organ systems working together. They can be single-celled (like bacteria) or multicellular (like humans). - **Populations**: Populations refer to groups of individuals of the same species living in the same area and interacting with each other. For example, a population of deer living in a forest. - **Communities**: Communities encompass all the different populations of organisms that live and interact with each other within a specific area. For instance, a community could include populations of plants, animals, and microorganisms in a particular ecosystem. - **Ecosystems**: Ecosystems involve both the living organisms (communities) and the non-living components of a particular environment. This includes air, water, soil, and other physical factors. An ecosystem can be a forest, a lake, or even a small pond. So, in summary, the correct hierarchical organization of life from the smallest to the largest scale is: **Cells, tissues, organs, organisms, populations, communities, ecosystems**.
Ibeere 18 Ìròyìn
Most fishes do not sink in water because of the presences of:
I. swim bladder
II. air bladder
III. air sacs
IV. air in spongy bones
Awọn alaye Idahun
Fishes have a swim bladder or air bladder which helps them to remain buoyant without sinking in water. They are present in the body cavity.
Ibeere 19 Ìròyìn
Which of the following statements about viruses is true?
Awọn alaye Idahun
Viruses require a host cell to replicate. Viruses are not living organisms on their own. They are tiny infectious agents that can only replicate and multiply inside the cells of other living organisms. In order to reproduce, viruses depend on a host cell. They infect the host cell and take control of its machinery, directing it to produce more viruses. This process of using the host cell's machinery for replication is known as the viral life cycle. Once the new viruses are produced, they can go on to infect other cells and continue the cycle of reproduction. Therefore, it is true that viruses need a host cell to replicate.
Ibeere 20 Ìròyìn
Which of the following is an example of a microorganism in action as a disease vector?
Awọn alaye Idahun
An example of a microorganism in action as a disease vector is the mosquito transmitting malaria. Mosquitoes are tiny insects that can carry the malaria parasite from an infected person to a healthy person through their bites. Malaria is a disease caused by a microscopic parasite called Plasmodium. When a mosquito bites a person infected with malaria, it sucks up the Plasmodium parasites along with the person's blood. Inside the mosquito, the parasites go through a complex life cycle and multiply. When the mosquito bites another person, it injects saliva containing the malaria parasites into the healthy person's bloodstream. The parasites then travel to the person's liver and red blood cells, where they continue to multiply, causing the symptoms of malaria. This means that the mosquito acts as a vector, carrying and transmitting the disease-causing microorganism (Plasmodium) from one person to another. Mosquitoes are responsible for spreading malaria, which is a major health concern in many parts of the world, especially in tropical and subtropical regions. It's important to note that while fungi decomposing dead plant material, bacteria causing food poisoning, and algae producing oxygen through photosynthesis are all examples of microorganisms, they do not typically act as disease vectors like the mosquito in the case of malaria transmission.
Ibeere 21 Ìròyìn
Which of the following is evidence of evolution?
Awọn alaye Idahun
All of the options listed are evidence of evolution.
Similarities in embryonic development:
Embryos of different organisms often have similar structures and developmental stages. For example, in the early stages of development, a human embryo has gill slits, similar to those of fish embryos. These similarities suggest a common evolutionary ancestry, where different organisms share common developmental patterns.
Fossils of extinct organisms:
Fossils provide direct evidence of organisms that once lived on Earth but are now extinct. By studying the preserved remains of ancient organisms, scientists can piece together the history and evolution of life. Fossilized bones, teeth, shells, and imprints of plants and animals provide a record of past life forms and how they have changed over time.
Homologous structures in different species:
Homologous structures are similar structures found in different species that originated from a common ancestor. For example, the forelimbs of a human, a bat, and a whale all have the same basic bone structure, even though they are used for different purposes. This similarity suggests that these species share a common ancestor and have evolved over time to adapt to their specific environments.
These different lines of evidence collectively support the theory of evolution, which states that all living organisms are related and have changed over time through a process of descent with modification.
Ibeere 22 Ìròyìn
Which of the following is a characteristic feature of Kingdom Plantae?
Awọn alaye Idahun
One characteristic feature of Kingdom Plantae is the ability to perform photosynthesis. Photosynthesis is the process by which plants use sunlight, carbon dioxide, and water to produce glucose (a sugar) and release oxygen as a byproduct. This process occurs within specialized organelles called chloroplasts, which are found in plant cells. Chloroplasts contain a pigment called chlorophyll that absorbs light energy from the sun and facilitates the conversion of carbon dioxide and water into glucose and oxygen. Through photosynthesis, plants are able to produce their own food and energy, making them autotrophs. Autotrophs are organisms that can synthesize organic compounds from inorganic substances. This ability allows plants to sustain themselves and support the growth and development of their tissues and structures. The presence of chloroplasts and the ability to perform photosynthesis are crucial characteristics that differentiate Kingdom Plantae from other kingdoms, such as Kingdom Animalia. Animals lack chloroplasts and are unable to produce their own food through photosynthesis. Instead, animals usually obtain their energy by consuming other organisms, making them heterotrophs. Therefore, the correct characteristic feature of Kingdom Plantae is the ability to perform photosynthesis.
Ibeere 23 Ìròyìn
Which of the following soil types becomes less fertile due to the intense leaching caused by tropical rains?
Awọn alaye Idahun
Tropical rains can cause intense leaching, which is the process of nutrients being washed away from the soil. This leaching can have a significant impact on soil fertility. Out of the given options, the soil type that becomes less fertile due to intense leaching caused by tropical rains is laterite soil.
Laterite soil is formed in areas with high temperatures and heavy rainfall, such as tropical regions. It is usually found in regions with a tropical monsoon climate, such as parts of India, Southeast Asia, and parts of Africa.
Because of the intense rainfall in these regions, laterite soil experiences a high degree of leaching. The heavy rainwater carries away the essential nutrients from the soil, making it less fertile over time. These nutrients include vital elements like nitrogen, phosphorus, and potassium, which are crucial for plant growth. As a result of intense leaching, laterite soils can become impoverished and low in nutrients.
This can pose challenges for agriculture as plants need these nutrients to thrive. Therefore, it is important for farmers in such regions to practice appropriate soil management techniques, such as using organic fertilizers or crop rotation, to replenish and maintain the fertility of laterite soil.
Ibeere 24 Ìròyìn
Which of the following statements is true regarding the urinary tubule in the excretory system?
Awọn alaye Idahun
The urinary tubule, a part of the nephron in the kidney, is indeed responsible for the production of urine. It does this by reabsorbing useful substances from the filtrate, such as glucose and ions, and secreting waste products into it. The modified filtrate, now called urine, is then passed on to the bladder for storage and eventual excretion.
Ibeere 25 Ìròyìn
Which of the following statements best describes pollination in plants?
Awọn alaye Idahun
Pollination is the process of transferring pollen from the anther to the stigma of a flower.
In simple terms, pollination is like the plant's way of reproduction. It involves the transfer of pollen, which contains the plant's male reproductive cells, from the anther (part of the flower where pollen is produced) to the stigma (part of the flower where pollen needs to land for fertilization).
This transfer can happen in different ways, depending on the plant species. It can be done by wind, insects, birds, or other animals. When pollen reaches the stigma, it can fertilize the female reproductive cells and lead to the formation of seeds and fruits.
To summarize, pollination is the essential step in plant reproduction where pollen is moved from the male part of the flower to the female part, allowing for the production of seeds.
Ibeere 26 Ìròyìn
Which of the following is a method of asexual reproduction in plants?
Awọn alaye Idahun
Vegetative propagation is a method of asexual reproduction in plants. It involves the production of new plants from vegetative parts of an existing plant, such as leaves, stems, or roots. In this process, specialized cells present in these vegetative parts undergo cell division and differentiation to form new plant structures.
These structures can develop into independent, full-grown plants that are genetically identical to the parent plant. Vegetative propagation occurs in various ways:
1. Stem cuttings: A portion of a stem (with leaf nodes) is cut from a parent plant and placed in a suitable medium, where it develops roots and grows into a new plant.
2. Root cuttings: Portions of a root are cut and planted, and they produce new shoots and roots, forming a new plant.
3. Leaf cuttings: Leaves are detached from a parent plant, and specific parts of the leaf develop into roots, stems, and eventually, new plants.
4. Suckers and runners: Some plants produce horizontal stems called runners or suckers that grow from the base of the parent plant. These stems develop roots and give rise to new plants.
This method of asexual reproduction is advantageous because it allows plants to produce offspring quickly without relying on pollination or fertilization. It also ensures that the offspring are genetically identical to the parent, maintaining desirable traits and characteristics.
In summary, vegetative propagation is a form of asexual reproduction in plants where new plants are produced from vegetative parts of an existing plant, such as stems, roots, or leaves. It helps plants multiply quickly and maintain genetic uniformity.
Ibeere 27 Ìròyìn
Which of the following statements is true regarding sex-linked traits?
Awọn alaye Idahun
Sex-linked traits are located on the sex chromosomes.
Many traits are determined by our genes, which are located on our chromosomes. In humans, we have 23 pairs of chromosomes, with one pair being the sex chromosomes. Females have two X chromosomes (XX), while males have one X and one Y chromosome (XY). The genes located on the sex chromosomes are called sex-linked genes. These sex-linked genes can carry traits, such as color blindness or hemophilia, that are more commonly observed in one gender over the other. For example, color blindness is more commonly observed in males because the gene for color vision is located on the X chromosome.
Since males only have one X chromosome, if they inherit a color blindness gene, they will display the trait. Females, on the other hand, have two X chromosomes, so if they inherit one normal X chromosome, they may not show the trait even if they carry the color blindness gene on their other X chromosome. It is not true that sex-linked traits are inherited solely from the mother. In reality, sex-linked traits can be inherited from either the mother or the father.
This is because both parents can pass on their sex chromosomes to their offspring. However, the frequency of inheritance may be different due to the nature of the sex chromosomes. For example, if the father carries a sex-linked trait on his X chromosome, all of his daughters will inherit that trait since they receive his X chromosome. However, his sons will not inherit the trait because they receive his Y chromosome instead.
It is not true that sex-linked traits are more commonly observed in females. The opposite is actually true. Since males only have one X chromosome, they are more likely to display the effects of a sex-linked trait if they inherit the gene. Females, on the other hand, have two X chromosomes, so they may not show the trait if they carry one normal X chromosome.
This means that sex-linked traits are more commonly observed in males. It is not true that sex-linked traits are not influenced by hormonal factors. In fact, hormonal factors can have an impact on the expression of sex-linked traits. Hormones can affect gene expression and overall development, which can influence the presentation of sex-linked traits.
For example, hormonal imbalances can affect the severity or appearance of certain sex-linked conditions. Therefore, hormonal factors can play a role in the expression and manifestation of sex-linked traits.
Ibeere 28 Ìròyìn
Which of the following is NOT a method of reproduction in animals?
Awọn alaye Idahun
Sporulation is NOT a method of reproduction in animals. Asexual reproduction is a method of reproduction where offspring are produced from a single parent without the involvement of gametes or fertilization.
This can occur through various mechanisms such as binary fission, budding, or regeneration. Budding is a form of asexual reproduction where a new individual develops from an outgrowth or bud on the parent organism. The new individual is genetically identical to the parent.
Sexual reproduction involves the fusion of gametes, which are specialized cells that carry genetic material, from two parent organisms. This process leads to the formation of genetically diverse offspring.
Sporulation is a form of reproduction commonly observed in some fungi, algae, and plants, but not in animals. Sporulation involves the production of spores that can develop into new individuals.
These spores can be dispersed through various means like wind, water, or animals, enabling them to reach new environments and colonize. In summary, while asexual reproduction, budding, and sexual reproduction are methods of reproduction in animals, sporulation is NOT a method of reproduction in animals.
Ibeere 29 Ìròyìn
Which of the following eye defects is caused by the inability of the eye to focus light on the retina?
Awọn alaye Idahun
The eye is a complex organ that allows us to see the world around us.
In order for us to have clear vision, light must be accurately focused onto the retina, which is located at the back of the eye.
Out of the options you provided, the eye defect that is caused by the inability of the eye to focus light on the retina is Myopia, also known as nearsightedness.
Myopia occurs when the eye is too long or the cornea (the clear front part of the eye) is too steep, causing light to be focused in front of the retina instead of directly on it.
This results in distant objects appearing blurry or out of focus, while nearby objects can still be seen clearly. To put it simply, in myopia, the eye is like a camera that is unable to properly focus the light onto the film.
Instead, the light falls short and focuses in front of the film, resulting in a blurry image. It's worth noting that myopia is a very common eye condition and can be corrected with the use of glasses, contact lenses, or even laser eye surgery.
These corrective measures help to redirect the incoming light so that it is properly focused onto the retina, allowing clear vision.
So, in summary, the eye defect caused by the inability to focus light on the retina is Myopia (nearsightedness).
Ibeere 30 Ìròyìn
The term cell was given by
Awọn alaye Idahun
The term "cell" was given by Robert Hooke. He was an English scientist who lived in the 17th century. Hooke is famous for his book called "Micrographia," in which he described his observations under a microscope. In one of his observations, Hooke examined a thin slice of cork and noticed small compartments that reminded him of the empty rooms (cells) where monks lived in monasteries. He called these compartments "cells," and that's how the term came into existence. Although Hooke initially used the term to describe the structures he observed in cork, it was later found that cells are the fundamental units of life in all living organisms. Cells are the building blocks of life and are responsible for carrying out various functions necessary for an organism to survive and thrive. So, to summarize, the term "cell" was given by Robert Hooke when he observed small compartments in cork and named them after the rooms in monasteries. These cells are now known to be the basic units of life in all living organisms.
Ibeere 31 Ìròyìn
Which of the following statements about the heart is true?
Awọn alaye Idahun
The correct statement is: The heart is a muscular organ that contracts to circulate blood throughout the body.
The heart is a vital organ that keeps us alive by pumping blood continuously throughout our body. It is a muscular organ located in the chest, slightly tilted towards the left.
The main function of the heart is to circulate blood throughout the body, delivering oxygen and nutrients to all the organs and tissues. It does this by continuously contracting and relaxing, creating a pumping action.
The heart is made up of four chambers: two atria (singular: atrium) and two ventricles. The atria receive blood from the veins, while the ventricles pump the blood out of the heart. Deoxygenated blood, which has low oxygen levels and high carbon dioxide levels, enters the right atrium from the body through the superior and inferior vena cava.
The right atrium then contracts, pushing the blood into the right ventricle. From there, it is pumped to the lungs to get oxygenated. In the lungs, oxygen is added to the blood while carbon dioxide is removed. Oxygenated blood returns to the heart, specifically to the left atrium, through the pulmonary veins.
The left atrium contracts, pushing the blood into the left ventricle. The left ventricle, being the strongest chamber, pumps the oxygenated blood out of the heart and into the arteries that supply the rest of the body.
So, the heart does not produce red blood cells or receive blood from the kidneys. Its primary job is to pump oxygenated blood to the lungs for oxygenation and then pump the oxygen-rich blood to the rest of the body.
Ibeere 32 Ìròyìn
Metamorphosis is a biological process that involves
Awọn alaye Idahun
Metamorphosis is a biological process that involves the change in form and structure during the life cycle of certain organisms. This process happens in various organisms, such as insects and amphibians, but not all organisms experience metamorphosis. During metamorphosis, an organism goes through distinct stages of development, transitioning from one form to another. The transformation usually involves changes in physical appearance, behavior, and sometimes even habitat. For example, in the case of insects like butterflies, the process of metamorphosis starts from an egg. The egg hatches into a larva, often known as a caterpillar. The caterpillar then undergoes a period of growth, eating and storing energy. Eventually, it enters a stage called pupa or chrysalis. Inside the pupa, the caterpillar undergoes immense changes, such as the reorganization of its body and the formation of wings. Finally, it emerges as an adult butterfly, capable of reproducing. This transformation is driven by hormonal changes within the organism that control the growth and development of specific body structures and systems. Metamorphosis allows the organism to adapt to different stages of life, with each stage serving a specific purpose. In summary, metamorphosis is a fascinating biological process that involves the change in form and structure during the life cycle of certain organisms. It is a crucial part of their development, allowing them to undergo significant transformations and adapt to different stages of life.
Ibeere 33 Ìròyìn
Which of the following is an example of an adaptation for survival in social insects?
Awọn alaye Idahun
Formation of complex caste systems is an example of an adaptation for survival in social insects. Social insects like ants, bees, and termites live in colonies and work together for the benefit of the entire colony.
Caste systems in social insects are the division of labor within the colony, where individuals are assigned specific roles and tasks based on their physical characteristics and abilities. These castes typically include workers, soldiers, and reproductive individuals such as queens and drones.
The formation of complex caste systems is an important adaptation that helps social insects survive and thrive. Each caste has specific functions and responsibilities. For example, workers are responsible for tasks like foraging for food, building and maintaining the nest, and caring for the young. Soldiers, on the other hand, are responsible for defending the colony against threats.
This division of labor allows social insects to efficiently allocate their resources and adapt to various environmental conditions. It increases their chances of survival and success as a colony.
By having specialized castes, social insects can provide different services simultaneously, allowing the colony to be more efficient and resilient.
Overall, the formation of complex caste systems is a remarkable adaptation in social insects that enables them to effectively carry out their survival tasks and thrive in their habitats.
Ibeere 34 Ìròyìn
A biome characterized by hot summer, warm winter and treeless vegetation is
Awọn alaye Idahun
The biome characterized by hot summers, warm winters, and treeless vegetation is called a **temperate desert**. In this type of biome, the climate is generally dry, receiving very little rainfall throughout the year. The absence of trees in temperate deserts is primarily due to the harsh climate and the scarcity of water. The hot summers and warm winters create an environment that is not conducive for tree growth. Instead, you will find various types of plants adapted to survive in arid conditions, such as shrubs, grasses, and cacti. Temperate deserts can be found in regions like the Mojave Desert in the United States, the Gobi Desert in Asia, and the Patagonian Desert in South America. Despite the lack of trees, these deserts support a diverse range of wildlife that has adapted to survive in these arid conditions. This includes animals like reptiles, insects, small mammals, and birds. In summary, a temperate desert is a biome characterized by hot summers, warm winters, and treeless vegetation due to the harsh climate and low precipitation.
Ibeere 35 Ìròyìn
Which of the following is an example of conserving resources in an ecosystem
Awọn alaye Idahun
An example of conserving resources in an ecosystem is implementing sustainable fishing practices.
Sustainable fishing practices involve managing the fishing activities in a way that ensures the long-term health and productivity of the fish populations, as well as the surrounding ecosystem. By implementing sustainable fishing practices, fishermen take measures to prevent overfishing and reduce bycatch (unwanted or unintentionally caught species).
They also consider the reproductive cycle of the fish species and set limits on the number and size of fish that can be caught. This helps to maintain a healthy balance in the ecosystem by allowing fish populations to reproduce and regenerate.
It also avoids depleting the fish populations, which can have negative impacts on other organisms that depend on the fish for survival, as well as the livelihoods of fishermen. Additionally, sustainable fishing practices may involve using more selective fishing gear, such as traps or hooks, which can reduce damage to the surrounding habitat compared to destructive fishing methods.
Overall, sustainable fishing practices aim to conserve resources in an ecosystem by ensuring a sustainable and balanced relationship between human activities and the natural environment.
Ibeere 36 Ìròyìn
The natural place of an organism or community is known as
Awọn alaye Idahun
The natural place of an organism or community is known as its habitat.
A habitat is a specific place or environment where an organism or a community of organisms live and find the resources they need to survive and reproduce.
It is like a home for the organisms, providing them with food, water, shelter, and other necessary conditions. Each organism has its own specific habitat requirement, and different habitats can support different types of organisms. For example, a fish's habitat is in the water, where it can find plants, other animals, and suitable temperature and oxygen levels.
A bird's habitat is typically in the air and trees, where it can find nests, insects, and suitable climate conditions. Habitats can be diverse and varied, ranging from forests, deserts, oceans, grasslands, and more. They can be small, such as a leaf or a rock, or large, like an entire forest or a lake.
In summary, a habitat is the natural place where organisms or communities live and fulfill their needs for survival and reproduction. It provides the necessary resources and conditions for their existence.
Ibeere 37 Ìròyìn
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called:
Awọn alaye Idahun
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**. Let's break it down to understand why this is the correct answer. Genes are the units of heredity that determine traits in living organisms. Each gene exists in different forms called alleles. In monohybrid inheritance, we focus on the inheritance of a single gene from one generation to the next. When an organism has two copies of the same allele for a gene, it is called **homozygous** for that gene. Homozygous individuals can have two copies of the dominant allele (DD) or two copies of the recessive allele (dd). On the other hand, if an organism carries two different alleles for a gene, it is called **heterozygous**. Heterozygous individuals have one copy of the dominant allele and one copy of the recessive allele (Dd). In this case, the dominant allele often determines the visible trait, while the recessive allele is hidden or masked. To summarize, in monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**.
Ibeere 38 Ìròyìn
Which of the following describes the inheritance of traits from parents to offspring?
Awọn alaye Idahun
The correct term that describes the inheritance of traits from parents to offspring is Genetics.
Genetics is the branch of science that studies how traits are passed on from one generation to the next. It explains how parents pass on their features, such as eye color, hair texture, and height, to their children.
To understand how genetics works, we need to look at our genetic material called DNA. DNA is like a blueprint that contains all the information needed to build and function an organism. It is made up of four different molecules called nucleotides: adenine (A), thymine (T), cytosine (C), and guanine (G).
Parents pass on their DNA to their offspring through reproductive cells called gametes. In humans, these gametes are the egg from the mother and the sperm from the father.
Each of these gametes carries half of the genetic information of the parent. When a sperm fertilizes an egg, their genetic material combines, creating a unique set of genes for the offspring. Genes are specific segments of DNA that code for specific traits. For example, there are genes for eye color, height, and even susceptibility to certain diseases.
The combination of genes from both parents determines the characteristics that the offspring will inherit. For certain traits, such as eye color, a single gene may be responsible. However, for more complex traits, multiple genes are involved. The study of genetics also helps us understand how traits can be passed on over generations. This process is known as heredity. Sometimes, traits may skip a generation or reappear in later generations, depending on the specific combination of genes inherited.
So, in summary, genetics is the term that best describes the inheritance of traits from parents to offspring. It involves the transmission of genetic information in the form of genes from parents to their children through reproductive cells.
Through genetics, we can understand how traits are inherited and how they can vary in different individuals and generations.
Ibeere 39 Ìròyìn
The theory of evolution can be defined as
Awọn alaye Idahun
The theory of evolution can be defined as the idea that species change over time through natural processes. It is the scientific explanation for the diversity of life on Earth.
According to this theory, all living organisms share a common ancestry and have gradually evolved into different species over millions of years.
Evolution is driven by natural processes such as genetic variation, mutation, natural selection, and genetic drift. These processes lead to changes in the inherited traits of organisms over generations.
Contrary to the belief that all species were created in their current form, the theory of evolution proposes that species evolve through a gradual process.
It is not a hypothesis that organisms strive to improve themselves over generations, as evolution does not have a goal or direction. Instead, it is a process that occurs due to factors such as environmental changes and the pressures of survival and reproduction.
Evolution does not occur through a series of sudden and dramatic changes, as stated in the fourth option. Rather, it is a slow and continuous process that happens over long periods of time. In summary, the theory of evolution is the concept that species change over time through natural processes.
It is supported by extensive scientific evidence from various fields of study, such as paleontology, genetics, and comparative anatomy.
Ibeere 40 Ìròyìn
What is the primary source of variation in a population?
Awọn alaye Idahun
The primary source of variation in a population refers to the main factor that leads to differences or diversity among individuals within a species. In other words, it explains why individuals within the same species can look or behave differently from one another. One major source of variation is **mutation**. Mutations are random changes in the DNA sequence of an organism. They can occur naturally during DNA replication or as a result of exposure to certain environmental factors such as radiation or chemicals. Mutations introduce new genetic variations into a population, which can affect an individual's physical traits, behavior, or even their ability to survive and reproduce. Another significant source of variation is **gene flow**. Gene flow occurs when individuals or their genetic material migrate between different populations. This movement can bring in new genetic variants to a population or result in the loss of certain genetic traits. Gene flow helps to mix the gene pools of different populations and can contribute to the overall genetic diversity within a species. **Natural selection** is another important factor influencing variation. It is a process by which certain heritable traits become more or less common in a population over time, based on their influence on survival and reproduction. Individuals with advantageous traits that help them survive and reproduce are more likely to pass on these traits to their offspring. As a result, these traits become more prevalent in the population, while less advantageous traits may become less frequent or disappear altogether. Lastly, **genetic drift** is a source of variation that occurs by chance within small populations. It is influenced by random fluctuations in the frequency of certain genes within a population. Genetic drift can lead to the loss or fixation of certain genetic variants, particularly in small isolated populations or during population bottlenecks. This process can result in the reduction of genetic diversity in a population. In summary, the primary sources of variation in a population are **mutation**, **gene flow**, **natural selection**, and **genetic drift**. These factors work together, either independently or in combination, to shape the genetic diversity within a species.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?