Nkojọpọ....
Tẹ mọ́ & Dì mú láti fà yíká. |
|||
Tẹ ibi lati pa |
Ibeere 1 Ìròyìn
Which of the following statements is true regarding sexual reproduction in organisms?
Awọn alaye Idahun
Sexual reproduction in organisms involves the fusion of gametes from two parents, resulting in offspring with genetic variation. This means that the offspring inherit traits from both parents, leading to a combination of their genetic material. This process starts with the production of specialized cells called gametes by each parent. These gametes, such as sperms and eggs, contain half the number of chromosomes as other cells in the body. When two gametes fuse during sexual reproduction, they form a new cell called a zygote. The zygote then develops into an offspring with a unique combination of genes from both parents. This genetic variation is beneficial to the survival of a species. It allows for adaptation to changing environments. For example, if one parent has a genetic trait that provides resistance to a certain disease, there is a chance that the offspring may inherit that trait and be better equipped to survive if they encounter the same disease. In contrast, asexual reproduction involves the production of offspring through a single parent, resulting in genetically identical offspring. This can occur through processes such as budding, fragmentation, or binary fission. In asexual reproduction, there is no genetic variation, as the offspring are essentially clones of the parent. So, the true statement regarding sexual reproduction in organisms is that it involves the fusion of gametes from two parents, resulting in offspring with genetic variation.
Ibeere 2 Ìròyìn
What is the tissue responsible for transporting water and minerals from the roots to the rest of the plant?
Awọn alaye Idahun
The tissue responsible for transporting water and minerals from the roots to the rest of the plant is called the **xylem**. Xylem is a specialized plant tissue that is found in the stems and roots of plants. Its main function is to transport water, dissolved nutrients, and minerals from the roots, where they are absorbed, to the rest of the plant. The xylem is composed of several types of cells, including vessel elements and tracheids, which are long, tube-like structures. These cells are arranged end-to-end, forming a continuous pathway for water and minerals to flow through the plant. The movement of water and minerals in the xylem is driven by a process called transpiration. Transpiration occurs when water evaporates from the leaves of the plant through tiny pores called stomata. This creates a slight suction force, which pulls water up from the roots and through the xylem vessels. The xylem vessels are reinforced with a substance called lignin, which helps to provide support and prevent collapse. This allows the xylem to transport water and minerals against gravity, from the roots all the way up to the furthest leaves and branches of the plant. In summary, the xylem is the tissue responsible for transporting water and minerals from the roots to the rest of the plant. It uses specialized cells and the process of transpiration to create a continuous pathway for the movement of water and minerals throughout the plant.
Ibeere 3 Ìròyìn
Which of the following eye defects is caused by the inability of the eye to focus light on the retina?
Awọn alaye Idahun
The eye is a complex organ that allows us to see the world around us.
In order for us to have clear vision, light must be accurately focused onto the retina, which is located at the back of the eye.
Out of the options you provided, the eye defect that is caused by the inability of the eye to focus light on the retina is Myopia, also known as nearsightedness.
Myopia occurs when the eye is too long or the cornea (the clear front part of the eye) is too steep, causing light to be focused in front of the retina instead of directly on it.
This results in distant objects appearing blurry or out of focus, while nearby objects can still be seen clearly. To put it simply, in myopia, the eye is like a camera that is unable to properly focus the light onto the film.
Instead, the light falls short and focuses in front of the film, resulting in a blurry image. It's worth noting that myopia is a very common eye condition and can be corrected with the use of glasses, contact lenses, or even laser eye surgery.
These corrective measures help to redirect the incoming light so that it is properly focused onto the retina, allowing clear vision.
So, in summary, the eye defect caused by the inability to focus light on the retina is Myopia (nearsightedness).
Ibeere 4 Ìròyìn
A biome characterized by hot summer, warm winter and treeless vegetation is
Awọn alaye Idahun
The biome characterized by hot summers, warm winters, and treeless vegetation is called a **temperate desert**. In this type of biome, the climate is generally dry, receiving very little rainfall throughout the year. The absence of trees in temperate deserts is primarily due to the harsh climate and the scarcity of water. The hot summers and warm winters create an environment that is not conducive for tree growth. Instead, you will find various types of plants adapted to survive in arid conditions, such as shrubs, grasses, and cacti. Temperate deserts can be found in regions like the Mojave Desert in the United States, the Gobi Desert in Asia, and the Patagonian Desert in South America. Despite the lack of trees, these deserts support a diverse range of wildlife that has adapted to survive in these arid conditions. This includes animals like reptiles, insects, small mammals, and birds. In summary, a temperate desert is a biome characterized by hot summers, warm winters, and treeless vegetation due to the harsh climate and low precipitation.
Ibeere 5 Ìròyìn
Which of the following is evidence of evolution?
Awọn alaye Idahun
All of the options listed are evidence of evolution.
Similarities in embryonic development:
Embryos of different organisms often have similar structures and developmental stages. For example, in the early stages of development, a human embryo has gill slits, similar to those of fish embryos. These similarities suggest a common evolutionary ancestry, where different organisms share common developmental patterns.
Fossils of extinct organisms:
Fossils provide direct evidence of organisms that once lived on Earth but are now extinct. By studying the preserved remains of ancient organisms, scientists can piece together the history and evolution of life. Fossilized bones, teeth, shells, and imprints of plants and animals provide a record of past life forms and how they have changed over time.
Homologous structures in different species:
Homologous structures are similar structures found in different species that originated from a common ancestor. For example, the forelimbs of a human, a bat, and a whale all have the same basic bone structure, even though they are used for different purposes. This similarity suggests that these species share a common ancestor and have evolved over time to adapt to their specific environments.
These different lines of evidence collectively support the theory of evolution, which states that all living organisms are related and have changed over time through a process of descent with modification.
Ibeere 6 Ìròyìn
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called:
Awọn alaye Idahun
In monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**. Let's break it down to understand why this is the correct answer. Genes are the units of heredity that determine traits in living organisms. Each gene exists in different forms called alleles. In monohybrid inheritance, we focus on the inheritance of a single gene from one generation to the next. When an organism has two copies of the same allele for a gene, it is called **homozygous** for that gene. Homozygous individuals can have two copies of the dominant allele (DD) or two copies of the recessive allele (dd). On the other hand, if an organism carries two different alleles for a gene, it is called **heterozygous**. Heterozygous individuals have one copy of the dominant allele and one copy of the recessive allele (Dd). In this case, the dominant allele often determines the visible trait, while the recessive allele is hidden or masked. To summarize, in monohybrid inheritance, if an organism carries two different alleles for a particular gene, it is called **heterozygous**.
Ibeere 7 Ìròyìn
Which of the following are components of the skeletal system in humans?
Awọn alaye Idahun
The skeletal system in humans is composed of bones and joints. Bones and joints are the primary components of the human skeletal system
Ibeere 8 Ìròyìn
Which of the following statements best describes the role of competition in the process of adaptation?
Awọn alaye Idahun
The statement that best describes the role of competition in the process of adaptation is: Competition leads to the selection of individuals with favorable traits for survival and reproduction.
Competition refers to the struggle among individuals for limited resources, such as food, territory, mates, or other necessities for survival. In a population with limited resources, not all individuals can have access to them.
This competition creates a selective pressure which drives the process of adaptation. Adaptation is the process by which individuals become better suited to their environment over time.
Through competition, individuals with advantageous traits, which may include physical characteristics or behaviors, have a higher chance of surviving and reproducing successfully. This is because these individuals are better able to acquire the limited resources compared to those who do not possess these traits.
For example, in a population of birds, competition for food may be fierce. Birds with longer beaks may have an advantage in reaching and eating certain types of food that are otherwise inaccessible to birds with shorter beaks.
Over time, the birds with longer beaks are more likely to survive and pass on their longer beak trait to future generations. Therefore, competition plays a crucial role in the process of adaptation by selecting individuals with favorable traits, enabling them to survive, reproduce, and pass on those traits to future generations.
Ibeere 9 Ìròyìn
Which of the following is a characteristic feature of Kingdom Plantae?
Awọn alaye Idahun
One characteristic feature of Kingdom Plantae is the ability to perform photosynthesis. Photosynthesis is the process by which plants use sunlight, carbon dioxide, and water to produce glucose (a sugar) and release oxygen as a byproduct. This process occurs within specialized organelles called chloroplasts, which are found in plant cells. Chloroplasts contain a pigment called chlorophyll that absorbs light energy from the sun and facilitates the conversion of carbon dioxide and water into glucose and oxygen. Through photosynthesis, plants are able to produce their own food and energy, making them autotrophs. Autotrophs are organisms that can synthesize organic compounds from inorganic substances. This ability allows plants to sustain themselves and support the growth and development of their tissues and structures. The presence of chloroplasts and the ability to perform photosynthesis are crucial characteristics that differentiate Kingdom Plantae from other kingdoms, such as Kingdom Animalia. Animals lack chloroplasts and are unable to produce their own food through photosynthesis. Instead, animals usually obtain their energy by consuming other organisms, making them heterotrophs. Therefore, the correct characteristic feature of Kingdom Plantae is the ability to perform photosynthesis.
Ibeere 10 Ìròyìn
Digestive enzymes are responsible for
Awọn alaye Idahun
Digestive enzymes play a crucial role in our digestive system. They are responsible for breaking down the food we eat into smaller molecules so that our bodies can absorb the nutrients more easily. When we eat, our food enters the stomach and then moves into the small intestine. Here, the digestive enzymes are released and start breaking down the carbohydrates, proteins, and fats present in our food. These enzymes help break down complex molecules into simpler ones. For example, amylase is an enzyme that breaks down carbohydrates into smaller sugar molecules like glucose. Proteases break down proteins into amino acids, while lipases break down fats into fatty acids and glycerol. Once these molecules are broken down, they can be easily absorbed into the bloodstream through the lining of the small intestine. This is where the nutrients are taken up by our body cells and used for energy, growth, and repair. In addition to breaking down food, digestive enzymes also help in regulating the pH of the digestive tract. The stomach, for instance, has a highly acidic environment due to the presence of hydrochloric acid. Digestive enzymes help maintain the optimal pH level needed for their proper functioning. Lastly, digestive enzymes are also involved in transporting food through the digestive system. Peristalsis, which is the movement of food through the digestive tract, is facilitated by these enzymes. In conclusion, digestive enzymes are responsible for breaking down our food into smaller molecules, absorbing the nutrients into the bloodstream, regulating the pH of the digestive tract, and transporting food through the digestive system. They play a vital role in ensuring proper digestion and nutrient absorption in our bodies.
Ibeere 11 Ìròyìn
Which processes are involved in nutrient cycling in a functioning ecosystem?
Awọn alaye Idahun
Nutrient cycling is a vital process in a functioning ecosystem because it ensures that nutrients, such as carbon, nitrogen, and phosphorus, are continuously recycled and available for organisms to use. There are several processes involved in nutrient cycling: 1. Decomposition: When plants and animals die, their organic matter is broken down by decomposers like bacteria and fungi. These decomposers release nutrients back into the soil or water as they break down the organic matter. This process is called decomposition. 2. Nitrogen fixation: Nitrogen is an essential nutrient for plants, but most plants cannot use nitrogen in its atmospheric form. Nitrogen fixation is the process by which certain bacteria convert atmospheric nitrogen into a form that plants can absorb and use. This conversion makes nitrogen available in the ecosystem. 3. Denitrification: Denitrification is the opposite of nitrogen fixation. Some bacteria convert nitrogen compounds back into atmospheric nitrogen, releasing it into the air. This process helps to maintain a balance of nitrogen in the ecosystem. 4. Ammonification: Ammonification is the conversion of organic nitrogen compounds into ammonia by bacteria and fungi. This ammonia can then be converted into another form, such as nitrate, through nitrification. 5. Respiration: Respiration is the process by which organisms, including plants and animals, release carbon dioxide into the atmosphere as a byproduct of cellular respiration. This carbon dioxide is taken up by plants during photosynthesis. 6. Photosynthesis: Photosynthesis is the process by which plants use sunlight, carbon dioxide, and water to produce glucose (a form of stored energy) and oxygen. This process is essential for capturing energy from the sun and producing food for other organisms. 7. Transpiration: Transpiration is the process by which plants release water vapor into the atmosphere through their leaves. This process helps to maintain the water cycle and influences the distribution of water in the ecosystem. In summary, nutrient cycling involves processes such as decomposition, nitrogen fixation, denitrification, ammonification, respiration, photosynthesis, and transpiration. These processes work together to ensure that nutrients are continuously recycled and available for organisms in a functioning ecosystem.
Ibeere 12 Ìròyìn
Which of the following is an evolutionary trend commonly observed in organisms?
Awọn alaye Idahun
Increased genetic diversity within populations is an evolutionary trend commonly observed in organisms. Evolution is the process by which species change and adapt over time.
One important factor in evolution is genetic diversity, which refers to the variety of genetic traits within a population. Genetic diversity is beneficial to a population because it increases its chances of survival.
When individuals within a population have different genetic traits, they may respond differently to changes in the environment. This variation allows some individuals to better adapt to changing conditions, ensuring the survival of the population as a whole.
Over time, species can develop new traits and characteristics through genetic mutations, recombination, and other mechanisms. These changes can lead to increased genetic diversity within a population.
Increased genetic diversity can also occur through immigration and gene flow, when individuals from other populations bring new genes into a population.
This can further enhance the genetic variety within a group. In summary, increased genetic diversity within populations is an evolutionary trend commonly observed in organisms.
It allows for better adaptation to changing environments and increased chances of survival for a population in the long run.
Ibeere 13 Ìròyìn
Which of the following is NOT a method of reproduction in animals?
Awọn alaye Idahun
Sporulation is NOT a method of reproduction in animals. Asexual reproduction is a method of reproduction where offspring are produced from a single parent without the involvement of gametes or fertilization.
This can occur through various mechanisms such as binary fission, budding, or regeneration. Budding is a form of asexual reproduction where a new individual develops from an outgrowth or bud on the parent organism. The new individual is genetically identical to the parent.
Sexual reproduction involves the fusion of gametes, which are specialized cells that carry genetic material, from two parent organisms. This process leads to the formation of genetically diverse offspring.
Sporulation is a form of reproduction commonly observed in some fungi, algae, and plants, but not in animals. Sporulation involves the production of spores that can develop into new individuals.
These spores can be dispersed through various means like wind, water, or animals, enabling them to reach new environments and colonize. In summary, while asexual reproduction, budding, and sexual reproduction are methods of reproduction in animals, sporulation is NOT a method of reproduction in animals.
Ibeere 14 Ìròyìn
Which of the following is a primary source of pollution in aquatic ecosystems?
Awọn alaye Idahun
One primary source of pollution in aquatic ecosystems is **industrial discharge**. Industrial discharge refers to the release of waste materials and pollutants from industries into water bodies such as rivers, lakes, and oceans. These pollutants can include chemicals, heavy metals, oils, and other harmful substances. When not properly managed or treated, industrial discharge can have detrimental effects on aquatic ecosystems. These pollutants can contaminate the water, making it toxic and unsuitable for aquatic life. They can also disrupt the balance of nutrients and oxygen levels in the water, leading to the decline of certain species and the proliferation of others. Furthermore, industrial discharge can result in the accumulation of pollutants in the tissues of aquatic organisms, which can then enter the food chain. This can have cascading effects on the entire ecosystem, including bioaccumulation and biomagnification, where the concentration of pollutants increases as they move up the food chain, endangering higher-level predators and even humans who consume contaminated seafood. While the other options mentioned (soil erosion, air pollution, and deforestation) can indirectly contribute to water pollution, industrial discharge is a direct and significant source of pollution in aquatic ecosystems. Proper management, regulation, and treatment of industrial waste are necessary to minimize its harmful impact on the environment.
Ibeere 15 Ìròyìn
Which of the following is a plant hormone responsible for promoting cell elongation and growth?
Awọn alaye Idahun
The plant hormone responsible for promoting cell elongation and growth is **Gibberellins**. Gibberellins play a vital role in regulating plant growth and development. They are primarily responsible for promoting cell elongation, which leads to the growth of stems and leaves. When plants receive signals such as sunlight or changes in their environment, they produce gibberellins. These hormones then move throughout the plant, stimulating the cells to elongate. This elongation allows the stems and leaves to grow taller or expand in size, enabling the plant to reach for sunlight, absorb nutrients, and carry out other essential functions. In addition to promoting cell elongation, gibberellins also influence other aspects of plant growth, such as seed germination, flowering, and fruit development. They can break seed dormancy, ensuring that the seed sprouts and grows into a seedling. They also regulate the flowering process, helping plants transition from vegetative to reproductive stages. Lastly, gibberellins control fruit development by influencing cell division, expansion, and ripening. In summary, gibberellins are plant hormones responsible for promoting cell elongation and growth. They play a crucial role in regulating various aspects of plant development, from stem and leaf growth to seed germination, flowering, and fruit development.
Ibeere 16 Ìròyìn
Which of the following is an example of an abiotic ecological factor?
Awọn alaye Idahun
An abiotic ecological factor refers to a non-living component of the environment that can affect living organisms. Out of the options provided, **temperature** is an example of an abiotic ecological factor. Temperature plays a crucial role in shaping the environment and influencing the distribution and survival of living organisms. It is a measure of how hot or cold a place or object is. For organisms, temperature affects their physiology, behavior, and overall survival. Different species have specific temperature ranges within which they can function optimally. Too high or too low temperatures can have adverse effects on their growth, reproduction, and overall health. Temperature influences the rate of biological processes in organisms. For example, enzymes, which are essential for various biochemical reactions in living things, have an optimum temperature at which they work most efficiently. Deviation from this temperature can cause enzymes to denature or become less effective, affecting an organism's ability to carry out essential metabolic functions. Moreover, temperature influences the availability and movement of water, which is a vital resource for living organisms. In colder environments, water may freeze, limiting its availability, while in hotter environments, water may evaporate quickly, making it harder for organisms to obtain and conserve water. In conclusion, **temperature** is an abiotic ecological factor because it is a non-living component that significantly affects the distribution, physiology, and overall survival of living organisms.
Ibeere 17 Ìròyìn
Which of the following functions is performed by the skin to help maintain homeostasis in the human body?
Awọn alaye Idahun
The correct function performed by the skin to help maintain homeostasis in the human body is regulation of body temperature.
The skin plays a crucial role in maintaining a stable internal body temperature, regardless of the external environment. This process is known as thermoregulation. When our body gets too hot, the skin helps to cool it down, and when our body gets too cold, the skin helps to warm it up.
There are two main ways in which the skin helps regulate body temperature:
1. Sweat Glands: The skin contains sweat glands that produce sweat. When the body temperature rises, these sweat glands release sweat onto the surface of the skin. As the sweat evaporates, it takes away heat from the body, cooling it down.
2. Blood Vessels: The skin also has blood vessels near its surface. When the body temperature increases, these blood vessels expand, allowing more blood to flow through them. This increased blood flow helps to dissipate heat from the body. On the other hand, when the body temperature decreases, these blood vessels narrow, reducing the blood flow and conserving heat.
By regulating body temperature, the skin helps to maintain homeostasis, which is the body's ability to maintain a stable and balanced internal environment. This is essential for the proper functioning of various bodily processes and organs.
Ibeere 18 Ìròyìn
Which of the following processes is involved in the reproduction of developing organisms?
Awọn alaye Idahun
Reproduction in developing organisms involves the process of **fertilization**. Fertilization is the fusion of male and female gametes to form a zygote, which later develops into a new organism. During fertilization, a male gamete (sperm) and a female gamete (egg) combine to form a single cell called a zygote. This process usually occurs through sexual reproduction, where the male gametes are transferred to the female reproductive system, enabling the fusion of gametes. Fertilization is a crucial step in the reproductive cycle as it brings together the genetic material from both parents, contributing to the genetic diversity of the offspring. The zygote formed by fertilization undergoes cell division and differentiation, eventually developing into a new organism. Budding is a type of asexual reproduction where a new organism develops from an outgrowth or bud on the parent organism. This process involves the formation of a clone, as the offspring is genetically identical to the parent. Germination, on the other hand, is the process by which a seed develops into a new plant. It occurs in plant reproduction but is not directly involved in the reproduction of developing organisms. Pollination is an essential step in the sexual reproduction of flowering plants. It involves the transfer of pollen grains from the male part (anther) of a flower to the female part (stigma) of another flower, allowing fertilization to occur. While pollination is involved in the reproductive process of plants, it is not directly related to the reproduction of developing organisms. Therefore, out of the given options, the process directly involved in the reproduction of developing organisms is **fertilization**.
Ibeere 19 Ìròyìn
Which of the following statements is true about the kingdom Fungi?
Awọn alaye Idahun
Fungi obtain nutrients by absorbing organic matter. This is a true statement about the kingdom Fungi. Unlike plants, which use photosynthesis to make their own food, fungi are heterotrophic organisms that get their energy by breaking down and absorbing organic materials around them. Fungi are not photosynthetic organisms. Photosynthesis is the process by which plants and some other organisms convert sunlight into energy. Fungi do not have chloroplasts or other structures needed for photosynthesis. Instead, they rely on obtaining nutrients from decaying organic matter or by forming symbiotic relationships with other organisms. Fungi can be both single-celled (yeasts) or multicellular (mushrooms, molds, etc.). Many fungi are multicellular organisms, composed of a network of thread-like structures called hyphae. These hyphae work together to form complex structures like mushrooms. However, there are also fungi that exist as single-celled organisms, such as yeast. Finally, fungi do not reproduce through the formation of seeds. Instead, they reproduce through spores. Spores are tiny structures that can be dispersed by wind, water, or other means. When conditions are favorable, these spores can germinate and develop into new fungal organisms. To summarize, the true statement about the kingdom Fungi is that they obtain nutrients by absorbing organic matter. They are not photosynthetic organisms, can be multicellular or single-celled, and reproduce through spores, not seeds.
Ibeere 20 Ìròyìn
What is the term used to describe the maximum number of individuals of a species that an environment can support indefinitely?
Awọn alaye Idahun
The correct term used to describe the maximum number of individuals of a species that an environment can support indefinitely is **carrying capacity**. Carrying capacity refers to the maximum number of individuals that a particular ecosystem or habitat can sustain, taking into account the available resources such as food, water, shelter, and space. It is the point at which the environment's resources are sufficient to meet the needs of the population without causing detrimental effects. As an analogy, imagine a room with a limited amount of chairs and enough food for a certain number of people. The carrying capacity of the room would be the maximum number of individuals that can comfortably fit in the space and be adequately fed without any negative consequences like overcrowding or resource depletion. In ecological terms, populations tend to grow when conditions are favorable, such as abundant resources and few limiting factors. However, as the population increases, resources become more limited, and competition among individuals for these resources intensifies. At some point, the population reaches its carrying capacity, where the available resources cannot support any additional individuals. Carrying capacity is crucial because it determines the balance between population size and available resources in an ecosystem. By understanding and managing the carrying capacity of a habitat, we can help maintain a healthy and sustainable environment for both the species and the ecosystem as a whole.
Ibeere 21 Ìròyìn
Viviparity refers to the reproductive strategy in which
Awọn alaye Idahun
Viviparity refers to the reproductive strategy in which offspring develop and are nourished inside the female's body. This means that instead of laying eggs externally, like in other reproductive strategies, the female's body provides a protected environment for the embryo to develop and receive nutrients.
Ibeere 22 Ìròyìn
Which of the following describes the inheritance of traits from parents to offspring
Awọn alaye Idahun
Genetics describes the inheritance of traits from parents to offspring. This refers to the passing down of genetic information from one generation to the next.
Genes are segments of DNA that contain instructions for specific traits. Offspring inherit a combination of genes from both parents, which determines their characteristics. For example, genetic information determines traits such as eye color, hair color, height, and many others.
The process of inheritance occurs during reproduction. Sexual reproduction, where genetic material from two parents combines, results in offspring with a mix of traits from both parents. This blending of genetic information gives rise to unique individuals within a species.
The study of genetics helps us understand how traits are passed down, how certain traits can be dominant or recessive, and how variations and mutations can occur. Understanding genetics is essential in many areas of science, from medicine and agriculture to evolutionary studies. While evolution, adaptation, and natural selection are all related concepts, they deal more with the changes and variations in traits within a population over time.
Genetics, on the other hand, focuses specifically on the mechanisms of inheritance and the passing down of traits from one generation to the next.
Ibeere 23 Ìròyìn
Which of the following best describes the concept of trophic levels in a functioning ecosystem?
Awọn alaye Idahun
Trophic levels in a functioning ecosystem refer to the different levels of energy flow within the ecosystem. To understand this concept, let's imagine an ecosystem like a food pyramid. At the very bottom of the pyramid, we have the producers, which are usually plants or algae. These organisms use energy from the sun to create food through photosynthesis. They are able to convert sunlight into stored energy in the form of carbohydrates. Moving up the food pyramid, we have the herbivores or primary consumers. These are animals that eat the producers directly. They obtain energy by consuming plants or algae. Next, we have the carnivores or secondary consumers. These are animals that eat other animals. They obtain energy by consuming the herbivores. Finally, at the top of the food pyramid, we have the apex predators. These are usually large predators that have no natural predators of their own. They are at the highest trophic level because they obtain energy by consuming other carnivores. Each trophic level represents a different level of energy transfer. As energy flows from one level to the next, there is a decrease in the amount of available energy. This is because not all energy is efficiently transferred from one organism to another. Some energy is lost as heat or used for metabolic processes. In summary, trophic levels in a functioning ecosystem describe the different levels of energy flow within the ecosystem, starting with the producers and progressing through the different levels of consumers.
Ibeere 24 Ìròyìn
Which of the following is an example of physiological variation in organisms?
Awọn alaye Idahun
Physiological variation refers to differences in physiological traits or functions among individuals within a species. Blood pressure is a physiological parameter that can vary among individuals based on factors such as genetics, health conditions, lifestyle, and environmental influences. Physiological variation encompasses variations in functions, processes, and internal characteristics of organisms, such as metabolic rates, hormone levels, enzyme activities, blood parameters, and other physiological traits.
Ibeere 25 Ìròyìn
The membrane around the vacuole is known as
Awọn alaye Idahun
The membrane around the vacuole is known as the **tonoplast**. The tonoplast is a special membrane that surrounds the vacuole, which is a large storage sac found in plant cells. It separates the contents of the vacuole from the rest of the cell. Think of the tonoplast like a protective bubble around the vacuole. It controls what goes in and out of the vacuole, just like a fence controls who can enter or exit a yard. The tonoplast is made up of proteins and lipids, which are like the building blocks that give it structure and function. One of the important functions of the tonoplast is to regulate the movement of water and other molecules in and out of the vacuole. It acts like a gatekeeper, allowing certain substances to enter or leave the vacuole while keeping others out. This helps the cell maintain its internal balance and prevents harmful substances from entering. Additionally, the tonoplast plays a role in maintaining the shape and stability of the vacuole. It helps the vacuole maintain its structure and prevents it from collapsing under pressure. So, to summarize, the membrane around the vacuole is called the tonoplast, and it serves as a protective barrier, regulates the movement of molecules, and helps maintain the shape of the vacuole.
Ibeere 26 Ìròyìn
Which of the following structures in the ear is responsible for transmitting sound vibrations to the auditory nerve?
Awọn alaye Idahun
The cochlea is a spiral-shaped structure in the inner ear that is filled with fluid and lined with cells with very fine hairs. These hairs move when the fluid in the cochlea moves, thereby converting sound vibrations into nerve signals that the brain can interpret. Therefore, the correct answer is 'Cochlea.' The eardrum and ossicles help to transmit sound vibrations to the cochlea, but it is the cochlea that transmits these vibrations as signals to the auditory nerve.
Ibeere 27 Ìròyìn
Ecological succession refers to
Awọn alaye Idahun
Ecological succession refers to the gradual and predictable change in a community over time. It is a process in which an ecosystem or community goes through a series of changes, from one stable state to another, in a continuous and sequential manner.
During ecological succession, new species gradually replace existing ones in a given area. This change can occur due to various factors, such as natural events like wildfires or human activities like deforestation. These disturbances create opportunities for new species to colonize the area and establish themselves.
The process of ecological succession can be divided into two main types: primary succession and secondary succession. Primary succession occurs in areas that are devoid of any life, such as bare rock or volcanic lava. Here, the process starts with the colonization of pioneer species, like lichens and mosses, which break down the rock and create soil. This allows other plants and organisms to gradually establish themselves.
On the other hand, secondary succession occurs in areas that have been previously occupied by a community, but have experienced some form of disturbance, such as a forest fire or a clearing. In this case, the process starts with the re-establishment of species that were present before the disturbance.
Overall, ecological succession is an essential process that allows communities to adapt and change over time. It plays a crucial role in maintaining the balance and biodiversity of ecosystems. By understanding ecological succession, we can better comprehend how different species interact and how ecosystems respond to environmental changes.
Ibeere 28 Ìròyìn
Germination is the process in which a seed
Awọn alaye Idahun
Germination is the process in which a seed breaks dormancy and starts to grow into a mature plant. During germination, the seed absorbs water and nutrients from the soil, causing it to swell and soften. This allows the seed coat to crack open, revealing the young root known as the radicle. The radicle grows downward, anchoring the seedling into the ground and absorbing water and nutrients from the soil. As the seedling continues to grow, it develops leaves and stems, allowing it to eventually photosynthesize and produce its own food. In summary, germination is the starting point of a seed's growth, where it absorbs nutrients, breaks dormancy, and begins to develop into a mature plant capable of photosynthesis. Germination is a crucial stage in a plant's life cycle as it marks the beginning of its growth and the establishment of a new plant.
Ibeere 29 Ìròyìn
Which of the following is a male reproductive organ in humans?
Awọn alaye Idahun
The male reproductive organ in humans is the Testis.
The testis is responsible for producing sperm, which are the male reproductive cells. These sperms are needed for the process of fertilization, which occurs when a sperm cell fuses with an egg cell to form a new individual.
The testis also produces hormones, primarily testosterone. This hormone is responsible for the development and maintenance of male secondary sexual characteristics, such as facial hair, deepening of the voice, and muscle growth. The testis is located outside the body within a sac called the scrotum.
This is because sperm production occurs at a temperature slightly lower than the body temperature. The testis contains tiny coiled tubes called seminiferous tubules, where the sperm are produced. These sperm cells then mature and are stored in a structure called the epididymis until ejaculation.
In summary, the testis is the male reproductive organ responsible for producing sperm and testosterone, which are vital for reproduction and the development of male sexual characteristics.
Ibeere 30 Ìròyìn
What are the primary products of photosynthesis?
Awọn alaye Idahun
The primary products of photosynthesis are **glucose and oxygen**. During photosynthesis, plants use sunlight, carbon dioxide, and water to produce glucose, which is a type of sugar. This process occurs in special structures called chloroplasts, which are found in the cells of plants. Here's how it works: 1. **Sunlight**: Plants capture sunlight using a pigment called chlorophyll, which is located in the chloroplasts. This chlorophyll absorbs the energy from sunlight. 2. **Carbon Dioxide**: Plants take in carbon dioxide from the atmosphere through tiny pores called stomata, which are present on their leaves. Carbon dioxide is a gas that is released by animals and is also present in the air we breathe out. 3. **Water**: Plants absorb water from the soil through their roots. This water is then transported up through the stems to the leaves. 4. **Photosynthesis**: Inside the chloroplasts, the energy from sunlight is used to convert carbon dioxide and water into glucose and oxygen. This process involves a series of chemical reactions that occur in multiple steps. The glucose produced during photosynthesis serves as a source of energy for the plant. It can be used immediately, stored as starch for later use, or used to make other compounds needed by the plant. The oxygen produced as a byproduct of photosynthesis is released into the atmosphere through the stomata. It is a vital component for most living organisms, including animals, as we need oxygen to survive and carry out cellular respiration.
Ibeere 31 Ìròyìn
Which of the following is an example of a microorganism in action as a disease vector?
Awọn alaye Idahun
An example of a microorganism in action as a disease vector is the mosquito transmitting malaria. Mosquitoes are tiny insects that can carry the malaria parasite from an infected person to a healthy person through their bites. Malaria is a disease caused by a microscopic parasite called Plasmodium. When a mosquito bites a person infected with malaria, it sucks up the Plasmodium parasites along with the person's blood. Inside the mosquito, the parasites go through a complex life cycle and multiply. When the mosquito bites another person, it injects saliva containing the malaria parasites into the healthy person's bloodstream. The parasites then travel to the person's liver and red blood cells, where they continue to multiply, causing the symptoms of malaria. This means that the mosquito acts as a vector, carrying and transmitting the disease-causing microorganism (Plasmodium) from one person to another. Mosquitoes are responsible for spreading malaria, which is a major health concern in many parts of the world, especially in tropical and subtropical regions. It's important to note that while fungi decomposing dead plant material, bacteria causing food poisoning, and algae producing oxygen through photosynthesis are all examples of microorganisms, they do not typically act as disease vectors like the mosquito in the case of malaria transmission.
Ibeere 32 Ìròyìn
Which of the following mechanisms is responsible for providing support in plants?
Awọn alaye Idahun
Cell walls and turgor pressure are the mechanisms responsible for providing support in plants. Unlike animals that have muscles and skeletons for support, plants have cell walls and turgor pressure.
Cell walls: Plant cells have strong and rigid cell walls made of cellulose. These cell walls provide structural support to the entire plant. They help plants maintain their shape and prevent them from collapsing under their own weight. The cell walls also protect the delicate cell membrane and organelles inside the cell.
Turgor pressure: Within plant cells, there is a high concentration of water, and this water creates pressure against the cell walls. This pressure is called turgor pressure. Turgor pressure provides rigidity to plant cells, which in turn helps support the entire plant. When plant cells are well hydrated, turgor pressure keeps them turgid and upright, maintaining the shape and structure of the plant.
Together, the cell walls and turgor pressure work hand in hand to provide support to plants. The cell walls provide a strong framework, while turgor pressure maintains the structural integrity of individual cells.
This combination allows plants to stand upright and resist external forces such as wind or gravity.
To recap, while animals rely on muscles and skeletons for support, plants utilize cell walls and turgor pressure to provide their structural support.
Ibeere 33 Ìròyìn
Which of the following statements about viruses is true?
Awọn alaye Idahun
Viruses require a host cell to replicate. Viruses are not living organisms on their own. They are tiny infectious agents that can only replicate and multiply inside the cells of other living organisms. In order to reproduce, viruses depend on a host cell. They infect the host cell and take control of its machinery, directing it to produce more viruses. This process of using the host cell's machinery for replication is known as the viral life cycle. Once the new viruses are produced, they can go on to infect other cells and continue the cycle of reproduction. Therefore, it is true that viruses need a host cell to replicate.
Ibeere 34 Ìròyìn
Which of the following options correctly identifies excretory organs in animals?
Awọn alaye Idahun
The correct option that identifies excretory organs in animals is Lungs, kidneys, and skin.
Excretion is the process by which waste products are removed from an organism's body. Organisms produce waste as a result of their metabolic processes, and these waste products need to be eliminated from the body to maintain a healthy internal environment. Let's now examine each organ mentioned in the correct option:
1. Lungs: Lungs are the main respiratory organs in most animals. They play a crucial role in the process of respiration, which involves the exchange of gases between the body and the environment. During respiration, carbon dioxide, which is a waste product of cellular respiration, is eliminated through exhalation.
2. Kidneys: Kidneys are the primary excretory organs in animals. They filter the blood and regulate the composition of body fluids by removing waste products such as urea, excess water, and ions. The waste products filtered by the kidneys are then excreted as urine.
3. Skin: The skin, which is the largest organ in the body, also plays a role in excretion. It contains sweat glands that excrete sweat, a watery fluid that helps cool the body and removes certain waste products such as urea and salts.
In summary, the lungs eliminate carbon dioxide, the kidneys eliminate waste products through urine, and the skin excretes sweat. These three organs, lungs, kidneys, and skin, collectively facilitate the process of excretion in animals.
Ibeere 35 Ìròyìn
Most fishes do not sink in water because of the presences of:
I. swim bladder
II. air bladder
III. air sacs
IV. air in spongy bones
Awọn alaye Idahun
Fishes have a swim bladder or air bladder which helps them to remain buoyant without sinking in water. They are present in the body cavity.
Ibeere 36 Ìròyìn
Which of the following represents an example of ecological management and conservation through a biological association?
Awọn alaye Idahun
Ecological management and conservation through a biological association refers to a practice where a specific ecological system is protected and managed by using the interactions and relationships between different organisms within that system. Out of the given options, the **establishment of marine protected areas** represents an example of ecological management and conservation through a biological association. Marine protected areas are specific zones in the ocean where human activities, such as fishing or oil drilling, are restricted or prohibited. They are designed to conserve and protect marine biodiversity, ecosystems, and natural resources. Marine protected areas work by allowing ecosystems to function naturally, and they rely on the interactions between the different organisms within the marine environment. By restricting human activities, these areas provide essential habitats for marine species to reproduce, feed, and seek shelter. The establishment of marine protected areas promotes ecological balance and helps protect vulnerable and endangered species. It also allows for the recovery and regeneration of damaged marine ecosystems. In summary, the establishment of marine protected areas represents an example of ecological management and conservation through a biological association because it utilizes the natural interactions and relationships between organisms in the marine environment to preserve and protect the ecosystem for future generations.
Ibeere 37 Ìròyìn
Which of the following is NOT a part of the alimentary canal?
Awọn alaye Idahun
The liver is NOT a part of the alimentary canal. The alimentary canal, also known as the digestive tract, is a long tube that starts from the mouth and ends at the anus. It is responsible for the process of digestion and absorption of nutrients from the food we eat.
The oesophagus is a muscular tube that connects the mouth to the stomach. It allows food to pass from the mouth to the stomach by a process called swallowing.
The small intestine is the longest part of the digestive tract, where most of the digestion and absorption of nutrients take place. It receives the partially digested food from the stomach and breaks it down further with the help of enzymes, before absorbing the nutrients into the bloodstream.
The large intestine is the final part of the digestive system. It is responsible for absorbing water and electrolytes from the remaining indigestible food matter, and forming solid waste (feces) that is expelled from the body. However, the liver is not a part of the alimentary canal. It is an important organ located in the upper right side of the abdomen.
The liver has numerous functions in the body, including production of bile, which helps in the digestion and absorption of fats. While the liver plays a crucial role in digestion, it is not a structural part of the alimentary canal itself.
In summary, the liver is NOT a part of the alimentary canal. The oesophagus, small intestine, and large intestine are all parts of the alimentary canal responsible for the digestion and absorption of nutrients.
Ibeere 38 Ìròyìn
Which of the following is the most inclusive level of classification in the Linnaean system?
Awọn alaye Idahun
The most inclusive level of classification in the Linnaean system is the kingdom.
Ibeere 39 Ìròyìn
Which of the following statements about the heart is true?
Awọn alaye Idahun
The correct statement is: The heart is a muscular organ that contracts to circulate blood throughout the body.
The heart is a vital organ that keeps us alive by pumping blood continuously throughout our body. It is a muscular organ located in the chest, slightly tilted towards the left.
The main function of the heart is to circulate blood throughout the body, delivering oxygen and nutrients to all the organs and tissues. It does this by continuously contracting and relaxing, creating a pumping action.
The heart is made up of four chambers: two atria (singular: atrium) and two ventricles. The atria receive blood from the veins, while the ventricles pump the blood out of the heart. Deoxygenated blood, which has low oxygen levels and high carbon dioxide levels, enters the right atrium from the body through the superior and inferior vena cava.
The right atrium then contracts, pushing the blood into the right ventricle. From there, it is pumped to the lungs to get oxygenated. In the lungs, oxygen is added to the blood while carbon dioxide is removed. Oxygenated blood returns to the heart, specifically to the left atrium, through the pulmonary veins.
The left atrium contracts, pushing the blood into the left ventricle. The left ventricle, being the strongest chamber, pumps the oxygenated blood out of the heart and into the arteries that supply the rest of the body.
So, the heart does not produce red blood cells or receive blood from the kidneys. Its primary job is to pump oxygenated blood to the lungs for oxygenation and then pump the oxygen-rich blood to the rest of the body.
Ibeere 40 Ìròyìn
What is the definition of population ecology?
Awọn alaye Idahun
Population ecology is the scientific study of how populations of living organisms interact with each other and their environment. It focuses on understanding the distribution, abundance, and dynamics of populations within a species. This field of study aims to answer questions such as why certain species are more abundant in certain areas, how populations change over time, and how they interact with other populations in their ecosystem. Population ecology also examines the factors that influence the growth and decline of populations, including birth rates, death rates, immigration, and emigration. By studying these factors, scientists can gain insights into the mechanisms that regulate population sizes. In summary, population ecology is concerned with understanding the relationships between individuals of the same species and how they are influenced by their environment. It helps us understand how populations change, adapt, and interact within ecosystems.
Ṣe o fẹ tẹsiwaju pẹlu iṣe yii?