Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
The abiotic factor that affect the population growth of an organism is
Answer Details
The term abiotic factors refers to the non-living components of an environment that can influence the growth and survival of organisms. In the given options, the factor that qualifies as an abiotic factor is rainfall. Abiotic factors are different from biotic factors, which involve living things such as predators, food availability, and diseases.
Explanation:
1. **Rainfall**: This is the only abiotic factor mentioned in the list. Rainfall provides water, which is essential for the survival of most organisms. It affects the availability of water resources, which are crucial for hydration of plants and animals, as well as for maintaining aquatic habitats. The amount, timing, and distribution of rainfall can influence the growth of plant populations, which in turn affects the availability of food and shelter for other organisms.
2. **Predator**: This is not an abiotic factor. Predators are living organisms that can directly influence the population of prey species by hunting and consuming them. This is a biotic interaction.
3. **Food Shortage**: Food availability is related to living organisms and is considered a biotic factor. Food shortage directly affects the survival and reproduction of organisms that depend on that food source.
4. **Disease**: This is again a biotic factor. Diseases are caused by pathogens, which are living organisms such as bacteria, viruses, or fungi, and they can spread among populations, reducing their size and growth.
In summary, rainfall is the abiotic factor from the choices given, and it plays a critical role in the environment by influencing water availability and ecosystem balance.
Question 2 Report
One of the following is a courtship behaviour in animals
Answer Details
Courtship behavior in animals is a complex set of actions and rituals that animals perform to attract a mate and ensure reproduction. Among the given options, the behavior most directly related to courtship is display.
Why is display a courtship behavior?
A display involves a series of movements, sounds, visual appearances, or other activities performed by animals to attract a mate. These displays are meant to show off the animal's strength, health, genetic quality, and overall suitability as a mate. For example, peacocks spread their colorful feathers to attract peahens, while many bird species might sing or dance.
The purpose of such displays is to communicate information and signals to potential mates, enhancing the chances of successful mating. These displays often indicate the physical and genetic fitness of the individual performing them, allowing potential mates to choose who to pair up with best. Therefore, display is directly associated with attracting mates and is considered a courtship behavior.
Question 3 Report
Answer Details
Iron is a crucial nutrient for plants due to its involvement in several important biological processes. Let's break these down:
In summary, iron is crucial because it is involved in the formation of chlorophyll, proteins, and DNA, all of which are essential for the growth, energy production, and reproduction of the plant. This, in turn, helps the plant grow healthy and resilient.
Question 4 Report
Gaseous exchange takes place through the plasma membrane in
Answer Details
Gaseous exchange is a biological process through which different gases are transferred in opposite directions across a specialized respiratory surface. When it comes to simple organisms, this exchange can occur directly through the plasma membrane. The organism where gaseous exchange takes place through the plasma membrane is the paramecium.
Here is a simple explanation:
In conclusion, paramecium utilizes its plasma membrane for gaseous exchange due to its single-celled structure, allowing direct diffusion of gases.
Question 5 Report
One of the ways of controlling Schistosomiasis is by
Answer Details
One effective way of controlling Schistosomiasis is by destroying water snails and water weeds.
Schistosomiasis, also known as bilharzia, is a parasitic disease caused by trematode worms of the genus Schistosoma. The life cycle of these parasites heavily involves freshwater snails, which act as intermediate hosts. Here's how the life cycle works:
By destroying water snails and eliminating water weeds, which can provide habitat for these snails, you interrupt the lifecycle of the parasite. This can significantly reduce the risk of transmission to humans. It is crucial to control snail populations in freshwater bodies where human contact is common.
This method, along with other control measures such as providing access to safe water, improving sanitation, and educating communities about safe water practices, plays a crucial role in reducing schistosomiasis transmission. Importantly, to combat the disease effectively, a combination of approaches is usually necessary.
Question 6 Report
Use the diagram above to answer the question that follows
The experiment is set up to determine the presence of
Answer Details
Chlorophyll: Experiments related to chlorophyll typically involve leaves and light exposure to understand photosynthesis. You might see diagrams showing a leaf that is partially covered with foil to demonstrate which parts of the leaf perform photosynthesis.
Starch: To test for the presence of starch, particularly in plants, an experiment usually involves boiling a leaf in water, then in alcohol, and finally treating it with iodine solution. The presence of starch is confirmed by a blue-black color change.
Oxygen: Experiments designed to detect oxygen often involve aquatic plants like Elodea. When the plant is exposed to light, bubbles or gases released would indicate photosynthetic activity, releasing oxygen.
Pigment: Pigment experiments often relate to chromatography, where pigments are separated on a medium like paper. These are used to study various pigments present within plant tissues.
Question 7 Report
The oxygen transported to all parts of the body during blood circulation is used for the
Answer Details
The oxygen that is transported to all parts of the body during blood circulation is primarily used for the release of energy from food. This process is also known as cellular respiration.
Here's how it works:
Thus, the presence of oxygen is vital for cells to convert the energy stored in food into a form that can be used for all activities, from metabolic processes to muscle contraction. In summary, the primary purpose of oxygen transportation during blood circulation is for the release of energy from food, which is essential for maintaining life and performing all physiological functions.
Question 8 Report
An example of organism that exhibits counter-shading to escape from its predator is
Answer Details
An example of an organism that exhibits counter-shading to escape from predators is a fish. Counter-shading is a type of camouflage where an animal has a darker coloration on its upper side and a lighter coloration on its underside.
This adaptation helps fish in two main ways:
This dual blending effect helps fish to reduce the risk of being detected by predators, enhancing its chances of survival. This strategy is particularly beneficial in open water habitats where there are few places to hide.
Question 9 Report
Which of the following plants shows hypogeal germination?
Answer Details
To understand which plants exhibit hypogeal germination, we first need to comprehend what hypogeal germination is. In hypogeal germination, the cotyledons remain below the soil surface after the seed germinates. This occurs because the seedling's epicotyl (the part of the seedling above the cotyledons) elongates, pushing the shoot tip above the ground while the cotyledons stay buried, often serving their purpose as energy reserves.
Let's examine the given options:
From the options provided, both Groundnut and Maize exhibit hypogeal germination. While Groundnut's germination involves the cotyledons staying underground, Maize's germination follows a similar principle with its own adaptations.
Question 10 Report
The type of circulatory system found in arthropods and some molluscs is
Answer Details
The type of circulatory system found in arthropods and some molluscs is called an open circulatory system.
In an open circulatory system, the blood does not always travel inside blood vessels. Instead, the heart pumps the blood into open cavities or spaces in the body, and hence the organs are directly in contact with the blood. Unlike a closed system, where blood circulates only within blood vessels, the open system allows the blood to flow freely around tissues before being re-collected and circulated again. This kind of system is common in invertebrates like arthropods (insects, spiders) and some molluscs (like snails and clams).
This approach to circulation is generally less efficient than a closed circulatory system because there is less control over the direction and speed of the blood flow. However, it works well for the metabolic needs of these animals. They do not require the high energy needs of more complex organisms, so this system is well-suited to their lifestyles and environments.
Question 11 Report
The depressed side of paramecium which is lined with cilia leads to a tube-like structure called
Answer Details
The depressed side of a paramecium that is lined with cilia leads to a tube-like structure called the buccal cavity, also known as the gullet.
Question 12 Report
Answer Details
The central nervous system (CNS) is a crucial part of the overall nervous system in the body, responsible for processing information and controlling most functions of the body and mind. It comprises the brain and the spinal cord.
1. Brain: The brain is the control center of the CNS. It is responsible for interpreting sensory information, coordinating movement, and managing functions such as thoughts, emotions, and memories. The brain oversees all voluntary and involuntary actions.
2. Spinal Cord: The spinal cord acts like a communication highway, transmitting signals between the brain and the rest of the body. It is essential for reflex actions and relays messages to and from the brain.
Together, the brain and spinal cord make up the central nervous system. Without this system, the body would not be able to respond appropriately to stimuli or maintain homeostasis. Thus, the correct components of the central nervous system are the brain and spinal cord.
Question 13 Report
The urinary tubules opens into a proximal convoluted tubule coils to form distal by making a
Answer Details
The urinary tubules are part of the nephron, which is the basic functional unit of the kidney. Each nephron has several segments, including the proximal convoluted tubule, the loop of Henle, the distal convoluted tubule, and the collecting duct.
After the proximal convoluted tubule, the nephron forms a loop known as the loop of Henle. This loop dips down into the medulla of the kidney and is crucial for concentrating urine and maintaining water balance. The form that this loop takes is best described as a U-shaped loop. This shape is because the loop of Henle descends, makes a turn, and then ascends, forming a ‘U’ as it transitions eventually into the distal convoluted tubule.
Therefore, the correct description of the transition from the proximal convoluted tubule to the distal convoluted tubule, via the loop of Henle, is through a U-shaped loop.
Question 14 Report
In blood transfusion, a patient with group AB receives
Answer Details
In blood transfusion, a patient with blood type **AB** is known as a **universal recipient**. This means they can receive red blood cells from any blood group. This is because:
Therefore, a person with blood type AB can safely receive red blood cells from **donors with A, B, AB, and O blood types**. This is because:
Therefore, a patient with blood type AB can receive blood from donors with **group O, A, B, or AB**.
Question 15 Report
The part of the inner ear that is responsible for hearing is
Answer Details
The part of the inner ear that is responsible for hearing is the cochlea.
The cochlea is a spiral-shaped, fluid-filled structure that looks a little like a snail shell. Its primary function is to convert sound waves from the air into electrical signals that can be interpreted by the brain as sound. Here's how it works:
Thus, the cochlea plays an essential role in the process of hearing by transforming sound vibrations into nerve impulses that the brain can understand.
Question 16 Report
The part of the brain that receives sensory impulses of smell is the
Answer Details
The part of the brain that receives sensory impulses of smell is the olfactory lobe. When you perceive a scent, information from the nose's sensory cells is sent to the olfactory lobe, and it is here that the brain begins the process of identifying the fragrance. The olfactory bulb is the first region that processes smell sensory data, allowing you to discern various odors. Other parts of the brain, like the cerebrum, help process and associate these smells with memories or emotions, but the olfactory lobe is the initial receiver of these sensory signals related to smell.
Question 17 Report
A trait that is always expressed during crossing of hereditary characteristics is
Answer Details
When discussing the crossing of hereditary characteristics, a trait that is always expressed is known as a dominant trait. In genetics, traits are determined by genes, and each trait has two alleles, one from each parent. Alleles can either be dominant or recessive.
Dominant traits are those that are expressed in the organism's phenotype when at least one allele for the trait is dominant. This means that even if the organism has one dominant and one recessive allele for a trait, the dominant trait will take precedence and be observed in the individual.
Conversely, a recessive trait is only manifested in the phenotype if both alleles for that trait are recessive. Therefore, when a dominant allele is present, it will mask the expression of a recessive allele, resulting in the dominance of the trait in question.
For example, if a plant has one allele for tall height (dominant) and one for short height (recessive), the plant will appear tall because the tall allele is dominant.
Question 18 Report
Ecological succession can result from
Answer Details
Ecological succession is a natural process by which ecosystems change and develop over time. This process can be initiated by several factors, resulting in the gradual replacement of one community by another until a stable ecosystem, known as a climax community, is achieved.
One such factor that can lead to ecological succession is a newly formed habitat. When an area is newly formed, such as from a volcanic eruption creating new land, or when a glacier retreats exposing bare rock, there is no pre-existing community. Over time, pioneer species such as lichens and mosses begin to colonize the area. As they die and decompose, they contribute organic matter to the soil, making it more hospitable for future plant species. This leads to the gradual development of a more complex community.
A habitat with abundant food might not directly cause ecological succession, but it can support the growth and reproduction of organisms, contributing to the stability and complexity of existing ecosystems. However, changes in food availability can lead to shifts in populations and species interactions, indirectly influencing successional changes.
Another important factor is a habitat with space and light. When a disturbance such as a fire clears an area, removing trees and other vegetation, it creates open space and increases light availability. This situation allows new species to colonize the area, starting a process known as secondary succession. Initially, fast-growing species that require a lot of light dominate the area, but eventually, as the ecosystem matures, it becomes more diverse and balanced.
Lastly, a population of plants on fertile land provides a suitable environment for ecological succession. Fertile soils support a wide variety of plant species, which contribute to the formation of a complex and stable ecosystem over time. As plants grow and die, they enrich the soil, promoting the growth of secondary species until a mature community is established.
In summary, ecological succession can result from newly formed habitats, disturbances that create space and light, and fertile lands. These changes create conditions that allow different species to colonize and thrive, leading to the evolution of ecosystems over time.
Question 19 Report
A photosynthetic carnivorous plant which feeds on insects is
Answer Details
The **answer** is insectivorous.
Here's why: In the plant kingdom, there are unique plants known as "carnivorous plants" that have the ability to capture and digest insects and other small animals. Despite obtaining nutrients from these creatures, they still perform photosynthesis, which means they are able to convert sunlight into energy just like any typical plant.
A carnivorous plant that specifically feeds on insects is termed insectivorous. These insectivorous plants have special adaptations such as sticky surfaces, pitcher-like traps, or rapid leaf movements that help them catch insects. Examples include the Venus flytrap and the pitcher plant.
So, while they do engage in capturing insects as a source of additional nutrients, they still depend on sunlight for their energy through the process of photosynthesis.
Question 20 Report
The part of the kidney where the selective reabsorption takes place is
Answer Details
The part of the kidney where selective reabsorption takes place is the Henle's loop, also known as the Loop of Henle.
Here's a simple explanation:
The kidneys are responsible for filtering blood, removing waste, and balancing bodily fluids. This is accomplished through structures called nephrons, each of which functions like a tiny processing plant. A nephron comprises various parts, including the glomerulus, Bowman's capsule, and the Loop of Henle.
Initially, blood is filtered in the glomerulus, and the resulting fluid then enters the Bowman's capsule. However, this fluid contains essential nutrients and ions that our body needs. Therefore, it must be reabsorbed back into the bloodstream.
The Loop of Henle plays a critical role in this reabsorption process. It creates a concentration gradient that allows water, sodium, chloride ions, and other substances to be reabsorbed selectively into the blood. This ensures that vital nutrients and electrolytes are not lost in the urine.
The Henle's loop is integral in forming concentrated urine, enabling the body to conserve water and important nutrients while still eliminating waste effectively. Thus, it is the site where selective reabsorption primarily occurs.
Question 21 Report
Similar structures that are modified to work in different ways in different organisms are referred to as
Answer Details
Structures that are similar in form and origin but have been **modified** over time to function differently in various organisms are known as **homologous structures**. These structures indicate a common evolutionary ancestor. For example, the forelimbs of humans, bats, whales, and cats have the same basic bone structure but have adapted differently for tasks such as grabbing, flying, swimming, and walking. Each of these organisms developed modifications in their limb structure to suit their environment and lifestyle, which showcases the concept of homologous structures. Unlike **analogous structures** that have similar functions in different organisms but different evolutionary origins, homologous structures emphasize a common ancestry with different functional outcomes.
Question 22 Report
Answer Details
In a genetic cross, when we have a heterozygous red flower plant (Rr) and a white flowered plant (rr), we can use a Punnett square to determine the probability of each possible genotype of the offspring.
The parent genotypes are:
We can set up a Punnett square with the following alleles:
| r | r | |
|---|---|---|
| R | Rr | Rr |
| r | rr | rr |
From the table, we can see the following possible outcomes for the offspring:
Therefore, the probability that the offspring will be Rr is 2 out of 4 (or 1/2).
Question 23 Report
The resemblance of an organism to another organism as means of enhancing it's chances of survival in its habitat is known as
Answer Details
The phenomenon you are referring to is called mimicry. Mimicry occurs when one organism, known as the mimic, evolves to resemble another organism, called the model, in order to gain some advantage. This resemblance can help the mimic improve its chances of survival within its habitat.
Mimicry typically involves visual similarities, although it can also extend to auditory, olfactory, or behavioral traits. By mimicking another organism, the mimic may benefit in various ways, such as avoiding predators, enhancing foraging success, or improving reproductive opportunities.
For example, some harmless species may mimic the appearance of dangerous or unpalatable species to deter predators, while others might conceal themselves by resembling the environment or other benign organisms. This strategy not only helps them evade threats but sometimes aids in approaching prey. Overall, mimicry is a powerful evolutionary adaptation that plays a crucial role in the survival of many species.
Question 24 Report
Blood group AB is considered as universal recipient because they can receive blood from groups
Answer Details
Blood group AB is considered a universal recipient because individuals with this blood type can receive blood from all other blood groups, including A, B, AB, and O. This is possible due to the presence of both A and B antigens on the surface of their red blood cells and the absence of anti-A and anti-B antibodies in their plasma.
Here’s a simple breakdown:
This makes AB blood group the universal recipient as they can accept A, B, AB, and O blood, without experiencing adverse reactions caused by antibody-antigen incompatibility.
Question 25 Report
Answer Details
The major buffer in blood is the **bicarbonate buffer system**. The bicarbonate buffer system maintains the pH of the blood and is integral for physiological homeostasis. This system primarily involves **bicarbonate ions (HCO3-)** and works in conjunction with carbonic acid (H2CO3).
In the blood, the bicarbonate buffer system works by a reversible chemical reaction:
CO2 + H2O ⇋ H2CO3 ⇋ HCO3- + H+
Here’s how it functions:
This system is exceptionally effective at buffering rapid changes in pH. The respiratory and renal systems support the bicarbonate buffer system. The lungs regulate the concentration of CO2, and the kidneys control the concentration of HCO3-.
While erythrocytes (red blood cells), leucocytes (white blood cells), and lymph are components of blood, they do not play a primary role in the buffering systems of blood. The bicarbonate buffer system is primarily a chemical buffer that functions independently of these cellular components.
Question 26 Report
The major building block of an organism is...
Answer Details
The major building block of an organism is Carbon. Let me explain why:
1. Backbone of Organic Compounds: Carbon is the fundamental component in organic compounds, which form the basis of all living organisms. This includes carbohydrates, proteins, lipids, and nucleic acids (DNA and RNA). These molecules are crucial for the structure and function of cells.
2. Versatile Bonding: Carbon atoms can form four covalent bonds with other atoms. This allows carbon to form a diverse array of molecules, ranging from simple methane (CH4) to complex macromolecules like proteins and nucleic acids.
3. Stability: Carbon-based molecules are stable and can exist in various forms. This stability is critical for building compounds that are integral to life.
4. Flexibility in Forming Structures: Carbon chains can form rings, long chains, and branched formations, providing structural diversity that supports the complex needs of living organisms.
While elements like nitrogen, oxygen, and hydrogen are also essential, carbon's unique ability to bond in multiple and versatile ways is why it is considered the backbone of life. Hence, we often refer to life as "carbon-based."
Question 27 Report
The common examples of trees found in the desert are
Answer Details
Deserts are characterized by their arid conditions, meaning they receive very little rainfall throughout the year. To survive in such environments, plants need special adaptations. Among the plant varieties, the trees commonly found in deserts include **cacti** and the **baobab tree**. Here's a brief explanation of why these trees are well-suited to desert environments:
Plants like **raffia palm**, **coconut**, **white and red mangrove**, and **shea-butter** trees are not typically found in desert environments because they require more moisture and different soil conditions compared to the harsh, dry lands of the desert.
Question 28 Report
The cells responsible for transmitting messages to the effectors are
Answer Details
The cells responsible for transmitting messages to the effectors are motor neurons. These neurons play a critical role in the nervous system by transmitting impulses from the central nervous system (such as the brain and spinal cord) towards the muscles and glands, which are collectively known as effectors.
Here's a simple breakdown of how this process works:
Effectors are essential as they perform actions in response to neural signals, making motor neurons integral in generating coordinated movement and various physiological responses. In contrast, sensory neurons carry information from sensory receptors to the central nervous system, relay neurons (interneurons) facilitate communication within the central nervous system, and hair cells are specialized sensory receptors in the auditory and vestibular systems. Thus, the primary role of motor neurons is to convey signals to effectors to initiate a response or action.
Question 29 Report
The pigment carrying oxygen in the blood is
Answer Details
The pigment responsible for carrying oxygen in the blood is haemoglobin. Haemoglobin is a complex protein found in red blood cells. Its primary function is to transport oxygen from the lungs to the rest of the body and return carbon dioxide from the body to the lungs for exhalation. Each haemoglobin molecule can bind to four oxygen molecules, allowing it to carry and efficiently distribute a large amount of oxygen throughout the body.
Here's a simple explanation of how it works:
It is essential to note that while oxyhaemoglobin is simply haemoglobin that has combined with oxygen, the fundamental oxygen-carrying pigment itself is still haemoglobin.
Question 30 Report
Which of these is a medium of transportation in plants?
Answer Details
In plants, the **medium of transportation** is primarily the **cell sap**. Cell sap is the liquid found inside the large central vacuole of plant cells, and it plays a key role in transporting nutrients, minerals, and waste products. The vacuole itself is an important component in maintaining cell turgor pressure, which helps keep the plant upright. The movement of cell sap helps distribute essential substances throughout the plant.
On the other hand, the other options do not serve as media for transportation in plants:
Therefore, for transportation within plants, the **cell sap** is the correct answer.
Question 31 Report
Lamarck's theory of evolution is based on the idea of
Answer Details
Lamarck's theory of evolution is based on the idea of the inheritance of acquired traits. According to Lamarck, organisms can change during their lifetime by using or not using certain parts of their body. For example, he suggested that if a giraffe stretches its neck to reach higher leaves on trees, its neck will become longer. Furthermore, these traits that were acquired during an organism's lifetime could then be passed down to its offspring. Thus, the next generation would inherit the longer neck, leading to a gradual evolution of longer-necked giraffes over generations. This theory was one of the earliest ideas about evolution, although it has since been largely superseded by Darwin's theory of natural selection.
Question 32 Report
Which of these is a respiratory organ in mammals?
Answer Details
The organ responsible for respiration in mammals is the lungs. The lungs are located in the chest cavity and are essential for breathing. Here's a simple explanation:
The other options mentioned are not used for respiration in mammals:
Question 33 Report
Use the diagram above to answer the questions that follow
The part labelled I is
Answer Details
The part labelled I in the diagram is the oviduct.
To understand why it is the oviduct, let's first understand what an oviduct is. The oviduct, also known as the fallopian tube, is a tube-like structure that connects the ovary to the uterus in female mammals. Its main function is to transport eggs from the ovaries towards the uterus. Fertilization of the egg by sperm typically occurs within the oviduct.
Now, let's look at the structure of the other options:
Placenta: The placenta is an organ that develops in the uterus during pregnancy. It provides oxygen and nutrients to the growing baby and removes waste products from the baby's blood.
Amnion: The amnion is a thin membrane that forms a protective sac filled with amniotic fluid around the developing embryo or fetus.
Uterus: The uterus is a muscular organ where a fertilized egg implants and grows into a fetus during pregnancy.
Based on the description and location given by the diagram, part I is most consistent with the oviduct, as it is likely representing the tube-like structure leading from the ovary to the uterus.
Question 34 Report
A form of adaptive colouration that helps animals to remain unnoticed is
Answer Details
A form of adaptive coloration that helps animals to remain unnoticed is called countershading.
Countershading is a type of camouflage where an animal's coloration is darker on the upper side and lighter on the underside. This coloration helps them to blend into their surroundings better, reducing the chance of being seen by predators or prey.
Here's a simple explanation of how it works:
This dual shading effect reduces the animal's shadow and profile, making them less visible and thereby improving their chances of survival. Other terms like hibernation, aestivation, and migration refer to processes that are not directly related to coloration or camouflage. Therefore, countershading is the correct term for adaptive coloration that aids in concealment.
Question 35 Report
The causative agent of tuberculosis is
Answer Details
Tuberculosis, often abbreviated as TB, is a disease that primarily affects the lungs, although it can spread to other parts of the body. The **causative agent** of tuberculosis is a specific type of **bacteria** known as Mycobacterium tuberculosis.
To understand this better, let's break it down:
When someone with active tuberculosis coughs, sneezes, or even speaks, the bacteria can be spread through the air and inhaled by others, leading to new infections. This is why tuberculosis is described as a **contagious** disease.
Understanding that tuberculosis is caused by **bacteria** is crucial for its treatment and prevention. Antibiotics, which are medicines that specifically target bacterial infections, are used to treat and control the spread of tuberculosis.
In summary, it's important to recognize that tuberculosis is caused by a specific type of bacteria called Mycobacterium tuberculosis, which explains why antibiotics can be effective in its treatment.
Question 36 Report
DNA carries the genetic information and are generally found in the
Answer Details
DNA, which stands for Deoxyribonucleic Acid, is the molecule that contains the genetic instructions for the development, functioning, growth, and reproduction of all known living organisms and many viruses. It is often referred to as the blueprint of life because it holds the instructions needed to build and maintain an organism.
DNA is primarily found in the chromosomes within the cell nucleus. Chromosomes are long, thread-like structures made of protein and a single molecule of DNA. Every human cell, for example, typically contains 23 pairs of chromosomes, amounting to a total of 46. These chromosomes are distributed evenly when cells divide, ensuring that each new cell contains a complete set of genetic information.
Other components like ribosomes, blood, and enzymes do not contain DNA in the way chromosomes do. Ribosomes are cellular structures responsible for protein synthesis, blood is a body fluid important for transporting nutrients and oxygen, and enzymes are proteins that catalyze biochemical reactions. While they all perform essential roles within the organism, they do not serve as carriers of genetic information.
Question 37 Report
The type of variation where there are no remarkable differences between the two extreme individuals is called
Answer Details
The type of variation where there are no remarkable differences between the two extreme individuals is called continuous variation.
In biology, variation refers to the differences among individuals within a population. When we refer to continuous variation, we're talking about traits that are measured on a scale and show a range of small differences between individuals. An example is human height or weight. In these cases, individuals do not fall into a finite or distinct number of categories, but rather display a smooth and gradual transition across a range.
This type of variation typically results from the combined effects of many genes (polygenic inheritance) and the influence of environmental factors. It presents as a continuous range of expression, forming a bell-shaped curve when graphed, rather than discrete categories. Because of this smooth transition without sharp differences, it's termed as continuous variation.
Question 38 Report
Hemophilia in humans is controlled by the
Answer Details
Hemophilia in humans is controlled by a recessive gene found on the X chromosome. This means that the gene responsible for hemophilia is not dominant and it is located on one of the sex chromosomes, specifically the X chromosome.
Here is how it works:
In conclusion, hemophilia is inherited as a sex-linked recessive trait. This explains why it is more commonly observed in males than in females.
Question 39 Report
Answer Details
The first organisms on Earth are widely believed to have evolved from aquatic habitats. This conclusion is based on several scientific observations and theories.
1. **Early Earth Conditions:** When Earth was still a young planet, conditions were harsh, with a very hot climate and volcanic activity. During this time, the planet's surface was largely covered by oceans which provided a stable environment where simple life forms could potentially thrive. The presence of water is essential because it acts as a medium for chemical reactions and life-supporting processes.
2. **Chemistry of Life:** Water is a solvent that facilitates the necessary chemical reactions required for life. In aquatic environments, organic molecules could dissolve in water, leading to complex chemical reactions, leading to the formation of proteins, lipids, and nucleic acids, which are building blocks of life.
3. **Abiogenesis and the "Primordial Soup" Theory:** One theory of how life began is called the "primordial soup" theory, which suggests that life originated through chemical reactions in the ocean. This soup-like mixture of organic compounds provided the ideal conditions for the first living organisms to form.
4. **Evidence from Fossils:** The oldest known fossils are those of simple microorganisms such as bacteria. These fossils have been found in ancient sedimentary rocks, which were formed in water.
In summary, while there are different types of habitats available on Earth now, the initial conditions billions of years ago favored the formation of life in an aquatic environment. Therefore, it is widely accepted that the earliest life forms evolved in the aquatic habitat.
Question 40 Report
The transmission of diseases through contamination of food is an economic importance of
Answer Details
The transmission of diseases through contamination of food is an economic importance primarily related to cockroaches.
Cockroaches are considered pests that thrive in unsanitary environments. They are known to carry various pathogens, such as bacteria, viruses, and parasites, on their bodies and in their droppings. When they come into contact with food, they can contaminate it, leading to foodborne diseases.
This contamination can have several economic impacts:
Therefore, managing and preventing cockroach infestations is crucial to safeguarding public health and protecting economic interests associated with food safety.
Would you like to proceed with this action?