Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Calculate the effective capacitance of the circuit in the diagram given
Answer Details
The three 2uf capacitors are in parallel to each other so u add them like this
2uf+2uf+2uf=6uf
So u have three capacitors in series
6uf 2uf and 3uf
They are in series so
1/C= 1/6+1/3=1/2
C=2uf
Then the same thing with the last two capay
1/2+1/2=1uf
Thanks
Question 2 Report
A ball of mass 5.0kg hits a smooth vertical wall normally with a speed of 2ms?1
. Determine the magnitude of the resulting impulse
Answer Details
The magnitude of the resulting impulse can be calculated using the formula impulse = change in momentum. In this scenario, the ball experiences a change in velocity (speed) as it hits the wall. The ball's initial momentum is equal to its mass times its velocity, and its final momentum is zero since it comes to a stop after hitting the wall. The change in momentum is equal to the final momentum minus the initial momentum, which is equal to the negative of the initial momentum. Since the ball has a mass of 5.0 kg and a velocity of 2 m/s, its initial momentum is 5.0 kg * 2 m/s = 10.0 kg m/s. Therefore, the change in momentum is -10.0 kg m/s and the magnitude of the resulting impulse is 10.0 kg m/s, which is equal to 10.0 Ns. So, the correct answer is 10.0kgms−1.
Question 3 Report
Which of the following is true of an electrical charge?
Answer Details
The correct answer is option D: "All of the above." An electrical charge refers to the presence of an excess or deficit of electrons in an atom or molecule. In this context, positive charge means a deficit of electrons, whereas negative charge means an excess of electrons. Electric current refers to the flow of charged particles, typically electrons, through a conductor. Therefore, an electric current means the movement of electrons. In summary, all of the given options are true of an electrical charge, and they all relate to the behavior of electrons in an electrically charged system.
Question 4 Report
A solid cube of side 50cm and mass 75kg floats in a liquid with 13 of its height above the liquid surface. The relative density of the liquid is?
Answer Details
Volume of liquid displaced
= 23
(0.5)3
Mass of liquid displaced = mass of floating cube = 75kg
Density of liquid = massvolume
= 75(73(0.5))
× 3
= 0.9 × 103kgm−3
R.D of liquid = (0.9)(1.0)
× 103
= 0.9
Question 5 Report
A pulley system has three pulleys in the fixed block and two in the movable block and if the pulley has an efficiency of 72%, the mechanical advantage of the system is?
Answer Details
To make it easier understood
MA = E × Vr/100
Vr in a pulley system is the number of pulleys and in this case we have 5 (3 and 2)
So
MA = 72 × 5 = 360/100 = 3.6
Thanks
Question 6 Report
Which of the following is the dimension of pressure
Answer Details
The dimension of pressure is ML-1T-2 Pressure is defined as the force per unit area. This means that pressure is dependent on the force applied and the area over which it is applied. The unit of force is measured in Newtons (N), and the unit of area is measured in square meters (m2). Therefore, the unit of pressure is N/m2, which is also known as Pascals (Pa). To determine the dimension of pressure, we need to break down the units into their fundamental dimensions of mass (M), length (L), and time (T). Force is measured in N, which is kg m/s2. Area is measured in m2, which is L2. Therefore, the dimension of pressure can be calculated as (kg m/s2)/(L2), which simplifies to ML-1T-2.
Question 7 Report
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Answer Details
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Question 8 Report
Which of the following has the lowest internal resistance when new?
Answer Details
Among the given options, the Accumulator has the lowest internal resistance when new. Internal resistance is the resistance that a battery or cell provides to the flow of electric current within itself. Lower internal resistance means that the battery can supply more current to an external circuit without losing much of its own energy as heat. An Accumulator, also known as a rechargeable battery, is designed to be charged and discharged multiple times. It has a relatively low internal resistance when new, meaning it can provide a higher current than the other cells listed while wasting less energy internally as heat. A Leclanche cell and Daniell cell are primary cells, meaning they are designed to be used once and discarded. They have higher internal resistance compared to the accumulator, which limits their ability to supply high currents. A Torch battery, also known as a dry cell, is also a primary cell and has a higher internal resistance than the accumulator. It is commonly used in small electronic devices and has a longer shelf life than Leclanche and Daniell cells. In summary, an Accumulator has the lowest internal resistance when new, which makes it an ideal choice for applications requiring high current delivery such as electric vehicles, power tools, and renewable energy systems.
Question 9 Report
The electrochemical equivalent of silver is 0.0012g/C. If 36.0g of silver is to be deposited by electrolysis on a surface by passing a steady current for 5mins, the current must be?
Answer Details
The electrochemical equivalent of silver is a measure of the amount of silver that is deposited on a surface per unit of charge. In this case, the electrochemical equivalent of silver is 0.0012 grams per Coulomb of charge. To deposit 36.0 grams of silver by electrolysis, we need to know the amount of charge that must be passed through the solution. The amount of charge is given by: Q = m/z where m is the mass of silver to be deposited, 0.0012 is the electrochemical equivalent of silver, and z is the charge on one mole of electrons (z = 1 for a single electron). So, the amount of charge required is: Q = 36.0 g / 0.0012 g/C = 30000 C The current, I, is given by: I = Q / t where t is the time for which the current is flowing. In this case, t = 5 minutes. So, the current required is: I = 30000 C / (5 x 60 s) = 100 A Therefore, the current must be 100 Amperes.
Question 10 Report
A man walks 1km due east and then 1 km due north. His displacement is
Answer Details
The man first walks 1 km due east, which means he has moved 1 km horizontally to the right of his starting point. Then, he walks 1 km due north, which means he has moved 1 km vertically upwards from his previous position. To find his displacement, we need to draw a straight line from his starting point to his final position, which represents the shortest distance between the two points. This line is called the displacement vector. We can use the Pythagorean theorem to calculate the length of the displacement vector. The horizontal and vertical distances are the two legs of a right-angled triangle, and the hypotenuse is the length of the displacement vector. Using the Pythagorean theorem, we get: displacement = √((1 km)^2 + (1 km)^2) = √2 km The direction of the displacement vector is the angle between the displacement vector and the due north direction. We can find this angle using trigonometry. The tangent of the angle is the ratio of the horizontal distance to the vertical distance: tan(θ) = (1 km) / (1 km) = 1 Using a calculator, we can find that the angle is 45°. Therefore, the man's displacement is √2 km in the direction N 45° E. So, the correct answer is √2km N 45°E.
Question 11 Report
In the diagram shown, If the south-poles of two magnets stroke a steel bar, the polarities at T and V will respectively be
Answer Details
Question 12 Report
The density of 400cm3 of palm oil was 0.9gcm-3 before frying. If the density of the oil was 0.6gcm-3 after frying, assuming no loss of oil due to spilling, its new volume was?
Answer Details
The density of a substance is defined as its mass per unit volume. Therefore, the mass of the palm oil before frying was: Mass = Density x Volume = 0.9 g/cm³ x 400 cm³ = 360 g After frying, the mass of the palm oil remains the same, but its density changes to 0.6 g/cm³. Therefore, the new volume of the palm oil can be calculated by rearranging the density formula: Volume = Mass / Density = 360 g / 0.6 g/cm³ = 600 cm³ So the new volume of the palm oil after frying is 600 cm³. is the correct answer.
Question 13 Report
What is the resultant resistance of the circuit in the image shown?
Answer Details
Formulae resistance in parallel
= 1/R = 1/R1 +1/R2
1/R = 1/2 +1/2 = 1
Resistance are now in series
R = 1 + 3 + 4
= 8 ohms
Question 14 Report
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Answer Details
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Question 15 Report
Natural radioactivity consists of the emission of
Answer Details
Radioactive decay releases different types of energetic emissions. The three most common types of radioactive emissions are alpha particles, beta particles, and gamma rays.
Question 16 Report
To keep a vehicle moving at a constant speed V requires power P from the engine. The force provided by the engine is
Answer Details
The force provided by the engine to keep a vehicle moving at a constant speed is proportional to the power (P) required from the engine. This power is proportional to the product of the speed (V) and force (P), so the relationship can be expressed as P = kV, where k is a proportionality constant.
Question 17 Report
The differences observed in solids, liquids and gases may be accounted for by
Answer Details
The differences observed in solids, liquids, and gases can be accounted for by the spacing and forces acting between the molecules. In a solid, the molecules are packed closely together, so they have a fixed shape and volume. The intermolecular forces are strong enough to keep the molecules in a fixed position relative to one another. In a liquid, the molecules are still close together, but they are free to move around each other. The intermolecular forces are weaker than in a solid, so the molecules can slide past one another, giving the liquid its ability to flow and take the shape of its container. In a gas, the molecules are widely spaced and are in constant motion. The intermolecular forces are very weak, so the molecules are free to move around and fill any available space. Gases have no fixed shape or volume. So, the differences observed in solids, liquids, and gases can be explained by the spacing and forces acting between the molecules. It's not about their relative masses, melting points, or the different molecules in each of them.
Question 18 Report
Which of the following does NOT describe the Image formed by a plane minor?
Answer Details
The option that does NOT describe the image formed by a plane mirror is "Magnified". When an object is placed in front of a plane mirror, the image formed is: 1. Erect: The orientation of the object in the mirror is the same as the orientation of the object in real life. For example, if you raise your right hand in front of a plane mirror, the image in the mirror will also show your right hand raised. 2. Laterally inverted: The image formed in the mirror is flipped horizontally, which means that the left side of the object appears on the right side of the image and vice versa. For example, if you wear a shirt with the letter "H" on it and look at it in a plane mirror, the image will show the letter "H" flipped horizontally. 3. Same distance from the mirror as object: The image formed in the mirror is located behind the mirror at the same distance as the object is located in front of the mirror. For example, if you stand 1 meter away from a plane mirror, the image of yourself will also be located 1 meter away from the mirror, behind the mirror. 4. NOT magnified: The image formed in the plane mirror is of the same size as the object, which means that there is no magnification or reduction in the size of the image. For example, if you stand in front of a plane mirror with a height of 1 meter, the image of yourself in the mirror will also have a height of 1 meter. Therefore, the correct answer is "Magnified", as the image formed by a plane mirror is not magnified.
Question 19 Report
Which of the following is an essential physical property of the wires uses for making fuses ?
Answer Details
The essential physical property of the wire used for making fuses is low melting point. This means that the wire should have a low temperature at which it melts and breaks, interrupting the flow of electrical current. This is important in a fuse because when there is an overload of electrical current, the wire will melt, breaking the circuit and preventing damage to the electrical system. The other options, low density, low electrical resistivity, and hypothermal conductivity, are not as important for a fuse wire. Low density is the property of a material to be light, and it doesn't necessarily affect the performance of a fuse wire. Low electrical resistivity is the property of a material to have low resistance to the flow of electrical current, and it doesn't necessarily affect the performance of a fuse wire either. Hypothermal conductivity is the property of a material to conduct heat poorly, and it also doesn't necessarily affect the performance of a fuse wire.
Question 20 Report
For what values of F and ? will the forces shown in the diagram below be in equilibrium.
Answer Details
Resolve vertically, 40cos? = 20, ? = 60o
Resolve horizontally, f = 40sin? = 40sin60o
= 40(?32
)
= 20?3 N
Question 21 Report
The amount of heat needed to raise the temperature of 10kg of Copper by 1K is its
Answer Details
The correct answer is "specific heat capacity." Specific heat capacity is a measure of how much heat energy is required to raise the temperature of a certain amount of a substance by 1 degree Celsius (or 1 Kelvin, which is the same size as 1 degree Celsius). In this case, we are dealing with 10kg of copper, so we need to know the specific heat capacity of copper. The specific heat capacity of copper is 0.385 J/g°C (joules per gram per degree Celsius). To calculate the amount of heat needed to raise the temperature of 10kg of copper by 1K, we need to know the total mass of copper (10kg) and the specific heat capacity of copper (0.385 J/g°C). The formula for calculating the amount of heat energy required is: Heat energy = mass x specific heat capacity x change in temperature Since we want to raise the temperature by 1K, the change in temperature is 1K. So, the amount of heat energy required to raise the temperature of 10kg of copper by 1K is: Heat energy = 10kg x 0.385 J/g°C x 1K = 3.85 kJ Therefore, it takes 3.85 kilojoules (kJ) of heat energy to raise the temperature of 10kg of copper by 1K.
Question 22 Report
Electrical power is transmitted at a high voltage rather than a low voltage because the amount of energy loss is due to
Answer Details
The primary reason that power is transmitted at high voltages is to increase efficiency. As electricity is transmitted over long distances, there are inherent energy losses along the way. High voltage transmission minimizes the amount of power lost as electricity flows from one location to the next. How? The higher the voltage, the lower the current. The lower the current, the lower the resistance losses in the conductors. And when resistance losses are low, energy losses are low also. Electrical engineers consider factors such as the power being transmitted and the distance required for transmission when determining the optimal transmission voltage
Question 23 Report
A man hears his echo from a nearby hill 2s after he shouted. If the frequency of his voice is 260Hz and the wavelength is 1.29m, how far away is the hill
Answer Details
The speed of sound in air is approximately 343 meters per second at room temperature. The formula for the speed of sound is:
Speed of sound = Frequency × Wavelength
In this problem, we are given the frequency (260 Hz) and the wavelength (1.29 m) of the sound wave. We can use these values to calculate the speed of sound:
Speed of sound = 260 Hz × 1.29 m = 335.4 m/s
Next, we need to use the fact that the man hears his echo 2 seconds after he shouted. Since the sound wave traveled from the man to the hill and then back to the man, the total distance traveled by the sound wave is twice the distance from the man to the hill. We can use the formula:
Distance = Speed × Time
to calculate the distance from the man to the hill:
Distance = (335.4 m/s) × (2 s/2) = 335.4 m
Therefore, the hill is 335.4 meters away from the man. The answer is option (B), 335.4m.
Question 24 Report
If the focal length of a camera is 20cm, the distance from the film at which the lens must be set to produce a sharp image of 100cm away is
Answer Details
F = 20cm
V = 100cm
U = ?
1U
+ 1V
= 1F
120
+ 1100
= 1F
5+1100
= 1F
F = 1006
= 16.7cm
= 17cm
Question 25 Report
Which of the following phenomena is the practical evidence for the existence of the continual motion of molecules.
Answer Details
Brownian motion is the practical evidence for the existence of the continual motion of molecules. This phenomenon is observed as the random movement of particles suspended in a fluid, such as a liquid or a gas, due to the constant bombardment of the fluid molecules. It was first described by the Scottish botanist Robert Brown in 1827 and provides strong evidence for the kinetic theory of matter, which states that all matter is made up of constantly moving particles. The random movement of the suspended particles can be observed through a microscope and is a direct result of the continual motion of the fluid molecules.
Question 26 Report
The time rate of loss of heat by a body is proportional to the
Answer Details
The correct answer is "difference in temperature between the body and its surroundings." When a body is at a higher temperature than its surroundings, it will lose heat to the surroundings until it reaches thermal equilibrium, i.e., until the temperatures of the body and its surroundings are equal. The rate at which the body loses heat is proportional to the temperature difference between the body and its surroundings. This is known as Newton's law of cooling. The law of cooling applies to a wide range of situations, from the cooling of hot beverages to the cooling of electronic devices. It is important to understand this law because it allows us to predict how long it will take for a body to cool down to a certain temperature, and to design systems that can regulate the temperature of a body, such as heaters or refrigerators.
Question 27 Report
A 20kg mass is to be pulled up a slope inclined at 300 to the horizontal. If efficiency of the plane is 75%. The force required to pull the load up the plane is J [g=10ms−2 ]
Answer Details
The force required to pull a 20kg mass up a slope inclined at 300 can be calculated using the formula: force = mass * gravity * sin(angle) where mass is 20kg, gravity is 10 m/s^2 and angle is 300. The formula for efficiency is: efficiency = output force / input force where output force is the force required to pull the mass up the slope and input force is the force applied to the rope. Since the efficiency of the plane is 75%, the input force is 4 times the output force. So, the output force can be calculated as: output force = input force / 4 input force = mass * gravity * sin(angle) / efficiency input force = 20 * 10 * sin(300) / 0.75 input force = 533.2 N And the output force can be calculated as: output force = input force / 4 output force = 533.2 / 4 output force = 133.3 N So, the force required to pull the load up the plane is 133.3 N.
Question 28 Report
The product of force and time is?
Answer Details
The product of force and time is known as impulse. Impulse can be defined as the change in momentum that an object experiences as a result of a force being applied to it over a period of time. In simpler terms, impulse is the "push" that an object receives from a force acting on it for a certain amount of time. The more force applied, or the longer the time the force is applied, the greater the impulse and the greater the change in momentum of the object. It's important to note that impulse is a vector quantity, meaning it has both magnitude and direction. Impulse is a measure of the ability of a force to cause an object to change its velocity, and can be used to explain many phenomena in physics, such as why a heavy object is harder to stop than a lighter one, or why a soccer ball changes direction when it is kicked.
Question 29 Report
Which of the following is not a product of nuclear fusion?
Answer Details
Neutron is not a product of nuclear fusion. Nuclear fusion is the process by which two or more atomic nuclei come together to form a heavier nucleus, releasing a large amount of energy in the process. In most fusion reactions, the resulting products are alpha particles (helium nuclei) and energy in the form of gamma rays. X-rays and gamma rays are both forms of high-energy electromagnetic radiation that can be produced by nuclear reactions, including nuclear fusion. Alpha particles are also a common product of nuclear fusion, especially in the fusion reactions that power the sun. However, neutrons are not typically produced in fusion reactions. In fact, one of the major challenges in developing fusion as a practical energy source is finding ways to produce and control the high-energy neutrons that are generated in the process. Neutrons can be produced in some types of fusion reactions, but they are not a primary product. In summary, neutron is not a product of nuclear fusion, while X-rays, Y-rays (assuming this is a valid form of radiation), and alpha particles are common products of this process.
Question 30 Report
What flows to the earth by connecting the conductor to the earth?
Answer Details
When a conductor is connected to the earth, electrons flow to the earth. Electrons are negatively charged particles that are present in all conductors. When a conductor is connected to the earth, it creates a path for electrons to flow from the conductor to the earth, which helps to balance the electric potential and prevent the buildup of electric charge. This flow of electrons is known as grounding and is an important safety measure in electrical systems.
Question 31 Report
The resistance of a 40W car head lamp, drawing current from a 12V battery is ____.
Answer Details
The resistance of a 40W car headlamp can be calculated using Ohm's Law, which states that the current (I) flowing through a conductor between two points is directly proportional to the voltage (V) across the two points, and inversely proportional to the resistance (R) of the conductor. The equation can be written as V = IR. Since the power (P) of the headlamp is given as 40W and the voltage is 12V, we can calculate the current using the equation P = IV. Substituting I = P/V, we get I = 40/12 = 3.33A. Finally, using Ohm's Law, we can calculate the resistance as R = V/I = 12/3.33 = 3.6Ω. So, the resistance of the 40W car headlamp, drawing current from a 12V battery, is 3.6Ω.
Question 32 Report
Which of the following instruments is most suitable for measuring the outside diameter of a narrow pipe in a few millimeters in diameter?
Answer Details
The most suitable instrument for measuring the outside diameter of a narrow pipe in a few millimeters in diameter is a micrometer screw gauge. A micrometer screw gauge is a precision measuring instrument that can accurately measure small dimensions with high accuracy. It has a spindle that moves towards an anvil and a scale that indicates the measurement. The spindle moves in response to a small rotation of the thimble, allowing for precise and sensitive measurements. In contrast, a pair of calipers or a meter rule may not be accurate enough for measuring such small dimensions, and a tape rule may not be able to fit inside the narrow pipe. Therefore, a micrometer screw gauge is the most suitable option for measuring the outside diameter of a narrow pipe in a few millimeters in diameter.
Question 33 Report
Palm oil from a bottle flows out more easily after it has been heated because the
Answer Details
Molecules cannot be given energy during the heating and the molecules of oil cannot force each other out
Question 34 Report
Shadows and eclipses result from the
Answer Details
The rectilinear propagation of light means that light travels in straight lines as a wave. This can be observed in the well-defined shadows formed when an object blocks a light source and through the use of a pinhole camera.
According to Sudipa Sarkar, the formation of shadows with sharp edges demonstrates the rectilinear propagation of light, i.e. The fact that light travels in straight line. When an opaque obstacle is placed between a source of light and a screen, a shadow of the obstacle is formed on the screen. The kind of shadow depends on the size of the source of light. If it is a point source (light from a small hole), the shadow obtained is a region of total darkness, called umbra.
If an extended source of light, e.g. a bulb, is used, the umbra is surrounded by a region of partial darkness, called penumbra. The moon is seen because it reflects the sun's light. An eclipse of the moon (lunar eclipse) occurs when the earth comes between the sun and the moon and prevents some of the light from the sun from reaching the moon. In other words, the earth casts its shadow on the moon. The solar eclipse occurs when the moon comes between the sun and the earth.
Question 35 Report
Which of the following concepts is not an evidence of the particles nature of matter?
Answer Details
The particle nature of matter refers to the idea that matter is made up of tiny particles that are constantly moving. Diffusion, Brownian motion, and crystallization are all examples of phenomena that can be explained by the particle nature of matter. However, diffraction is not an evidence of the particle nature of matter. Diffraction is a phenomenon that occurs when waves encounter an obstacle or a slit, causing them to spread out and interfere with each other. While particles can also exhibit diffraction, this is a property of waves and is not specific to particles. In summary, diffusion, Brownian motion, and crystallization are all evidences of the particle nature of matter, but diffraction is not.
Question 36 Report
A narrow beam of white light can be split up into different colours by a glass prism. The correct explanation is that
Answer Details
The correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. White light is made up of different colors with different wavelengths, ranging from violet to red. When a narrow beam of white light passes through a glass prism, the different colors refract at slightly different angles due to the fact that their wavelengths are different. This causes the different colors to spread out and form a spectrum. The amount of refraction that occurs depends on the speed of light in the medium. Different colors of light have different speeds in glass due to the fact that their wavelengths are different. This means that they will refract at different angles as they pass through the glass prism, causing them to spread out. So, the correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. Therefore, is the correct explanation. is incorrect because it describes what white light is made up of, but does not explain how it is split up into colors by a prism. is incorrect because a prism does not have all the colors of white light, but rather it separates the colors that are already present in white light. is incorrect because total internal reflection occurs when light is completely reflected back into the same medium, which is not what happens when white light is split up by a prism.
Question 37 Report
A particle of mass M initially at rest splits into two. If one of the particles of mass M1 moves with velocity V1 , the second particle moves with velocity
Answer Details
When a particle of mass M splits into two, the total mass is conserved, and so the sum of the masses of the two resulting particles must be equal to M. If one of the particles of mass M1 moves with velocity V1, we can use the law of conservation of momentum to determine the velocity of the second particle. The law of conservation of momentum states that the total momentum of a system of particles remains constant if no external forces act on the system. In this case, the initial momentum of the system is zero, since the particle was initially at rest. After the particle splits, the momentum of the system is the sum of the momenta of the two resulting particles. Let's use the subscript 1 to represent the first particle of mass M1 and the subscript 2 to represent the second particle of mass M-M1. By conservation of momentum, we have: 0 = M1*V1 + (M - M1)*V2 Solving for V2, we get: V2 = -M1/M*(V1) Therefore, the second particle moves in the opposite direction with velocity -M1/M*(V1). This means that the two particles move in opposite directions, with the ratio of their velocities determined by the ratio of their masses. Option (D) in the table shows the correct answer, which is -M1/M*(V1).
Question 38 Report
A lens of focal length 15cm forms on erect image which is three times the size of the object. The distance between the object and the image is ___.
Answer Details
We can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length of the lens, v is the distance between the lens and the image, and u is the distance between the lens and the object. From the problem, we know that the focal length of the lens is 15 cm, and the image is erect and three times the size of the object. This means that the image distance v is positive and the object distance u is negative (since the object is in front of the lens). Let's assume that the object distance u is -x cm, where x is a positive number. Then, the image distance v is +3x cm, since the image is three times the size of the object. Substituting these values into the lens formula, we get: 1/15 = 1/(+3x) - 1/(-x) Simplifying the right-hand side, we get: 1/15 = (1 + 3)/3x Multiplying both sides by 3x, we get: 3x/15 = 4 Simplifying, we get: x = 20 Therefore, the distance between the object and the lens is -20 cm (since it is in front of the lens), and the distance between the image and the lens is +60 cm (since it is behind the lens). The distance between the object and the image is the sum of these distances, which is: (-20) + (+60) = 40 cm Therefore, the answer is 40cm.
Question 39 Report
In the diagram given the hanging mass m2 is adjusted until m1 is on the verge of sliding. The coefficient of static
Answer Details
I think the correct option is C (m2m1 ). The coefficient of friction is a ratio of two forces and hence g will cancel out.
Question 40 Report
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Answer Details
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Would you like to proceed with this action?