Loading....
|
Press & Hold to Drag Around |
|||
|
Click Here to Close |
|||
Question 1 Report
The amount of heat needed to raise the temperature of 10kg of Copper by 1K is its
Answer Details
The correct answer is "specific heat capacity." Specific heat capacity is a measure of how much heat energy is required to raise the temperature of a certain amount of a substance by 1 degree Celsius (or 1 Kelvin, which is the same size as 1 degree Celsius). In this case, we are dealing with 10kg of copper, so we need to know the specific heat capacity of copper. The specific heat capacity of copper is 0.385 J/g°C (joules per gram per degree Celsius). To calculate the amount of heat needed to raise the temperature of 10kg of copper by 1K, we need to know the total mass of copper (10kg) and the specific heat capacity of copper (0.385 J/g°C). The formula for calculating the amount of heat energy required is: Heat energy = mass x specific heat capacity x change in temperature Since we want to raise the temperature by 1K, the change in temperature is 1K. So, the amount of heat energy required to raise the temperature of 10kg of copper by 1K is: Heat energy = 10kg x 0.385 J/g°C x 1K = 3.85 kJ Therefore, it takes 3.85 kilojoules (kJ) of heat energy to raise the temperature of 10kg of copper by 1K.
Question 2 Report
Which of the following best describes the energy changes which take place when a steam engine drives a generator which lights a lamp?
Answer Details
The energy changes that take place when a steam engine drives a generator which lights a lamp can be described as: Heat energy from burning fuel is used to create steam in the boiler of the steam engine. This steam is then used to drive the turbine, which generates kinetic energy as it spins. The kinetic energy is transferred to the generator, which converts it into electrical energy (electricity). The electricity then flows through the wires to the lamp, where it is converted back into light energy, which is what we see. Therefore, the correct option would be: Heat ----> Kinetic ----> Electricity ----> Light
Question 3 Report
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Answer Details
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Question 4 Report
The time rate of loss of heat by a body is proportional to the
Answer Details
The correct answer is "difference in temperature between the body and its surroundings." When a body is at a higher temperature than its surroundings, it will lose heat to the surroundings until it reaches thermal equilibrium, i.e., until the temperatures of the body and its surroundings are equal. The rate at which the body loses heat is proportional to the temperature difference between the body and its surroundings. This is known as Newton's law of cooling. The law of cooling applies to a wide range of situations, from the cooling of hot beverages to the cooling of electronic devices. It is important to understand this law because it allows us to predict how long it will take for a body to cool down to a certain temperature, and to design systems that can regulate the temperature of a body, such as heaters or refrigerators.
Question 5 Report
Natural radioactivity consists of the emission of
Answer Details
Radioactive decay releases different types of energetic emissions. The three most common types of radioactive emissions are alpha particles, beta particles, and gamma rays.
Question 6 Report
The force between the molecules of a liquid in contact with that of a solid is?
Answer Details
(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the molecules of different liquids or between the molecules of a liquid and those of a solid body when they are in contact with each other, is known as the force of adhesion. This force enables two different liquids to adhere to each other or a liquid to adhere to a solid body or surface.
Question 7 Report
An electric heating coil rated at 1KW is used to heat 2kg of water for 2 minutes. The initial water temperature is 30o C. Taking the specific heat of the water as 4,000Jkg −1 and neglecting that of the container, the final water temperature is
Answer Details
To determine the final temperature of the water, we can use the formula: Q = mcΔT where Q is the heat transferred, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. We know that the power of the electric heating coil is 1KW, which means it transfers 1000 Joules of energy per second. In 2 minutes, or 120 seconds, it transfers 120,000 Joules of energy to the water. The mass of the water is given as 2kg and the specific heat capacity of water is 4000 J/kg°C. We can assume that the initial temperature of the water is 30°C. Using the formula, we can solve for the change in temperature: 120,000 J = (2 kg)(4000 J/kg°C)(ΔT) ΔT = 15°C Therefore, the final temperature of the water is 30°C + 15°C = 45°C. So, the final water temperature is 45.0oC.
Question 8 Report
The inner diameter of a small test tube can be measured accurately using a
Answer Details
A vernier caliper is a measuring device used to precisely measure linear dimensions. It is a very useful tool to use when measuring the diameter of a round objects like cylinders because the measuring jaws can be secured on either side of the circumference.
Vernier calipers have both a fixed main scale and a moving vernier scale. The main scale is graduated in either millimetres or tenths of an inch. The vernier scale allows much more precise readings to be taken (usually to the nearest 0.02mm or 0.001 inch) in comparison to a standard ruler (which only measures to th nearest 1mm or 0.25 inch).
The vernier scale was invented by French mathematician Pierre Vernier in 1631. As part of the vernier caliper, it is used together with the main scale, and helps to provide very precise measurements. Vernier calipers usually show either imperial or metric measurements, but some measure in both.
Question 9 Report
The efficiency of energy conversion on the energy flow through a hydroelectric power is?
Answer Details
Efficiency = useful energy output from machineenergy input into machine
= E3E2
Question 10 Report
In the diagram shown, which of the simple pendulum will resonate with P when set into oscillation?
Answer Details
Question 11 Report
The critical angle for light travelling from a transparent medium to air s measured as 340. The refractive index of the medium is
Answer Details
The critical angle is the angle of incidence at which light is just able to pass through the interface between two media and not reflect back. When light travels from a medium with a higher refractive index to a medium with a lower refractive index, it slows down and bends towards the normal. If the angle of incidence is increased, the light will eventually reach a point where it will not be able to escape the higher index medium and will be totally reflected back. This is the critical angle. The formula for the critical angle can be expressed as follows: sin(θc) = n2/n1 Where θc is the critical angle, n1 is the refractive index of the first medium, and n2 is the refractive index of the second medium. In this case, the first medium is the transparent medium and the second medium is air, which has a refractive index of approximately 1. By substituting the value of sin(θc) with the value of 340, and n2 with 1, we can solve for n1. sin(340) = n1/1 n1 = 1/sin(340) The value of n1 calculated using this formula is approximately 1.79, which means that the refractive index of the transparent medium is 1.79.
Question 12 Report
Which of the following is true of an electrical charge?
Answer Details
The correct answer is option D: "All of the above." An electrical charge refers to the presence of an excess or deficit of electrons in an atom or molecule. In this context, positive charge means a deficit of electrons, whereas negative charge means an excess of electrons. Electric current refers to the flow of charged particles, typically electrons, through a conductor. Therefore, an electric current means the movement of electrons. In summary, all of the given options are true of an electrical charge, and they all relate to the behavior of electrons in an electrically charged system.
Question 13 Report
When a known standard resistor of 2.0 is connected to the 0.0cm end of a meter bridge, the balance point is found to be at 55.0cm. What is the value of the unknown resistor?
Answer Details
A meter bridge is an instrument used to measure the unknown resistance of a conductor. The meter bridge consists of a long resistance wire AB of uniform cross-sectional area and a battery of known voltage connected across its ends. A galvanometer is connected across a point C on the wire, which is called the null point or balance point.
When a known standard resistor of 2.0 ohms is connected to the 0.0cm end of the meter bridge wire, the balance point is found to be at 55.0cm. This means that the resistance of the unknown resistor is equal to the resistance of a portion of the meter bridge wire between the 0.0cm and the 55.0cm point.
To find the value of the unknown resistor, we can use the principle of the Wheatstone bridge, which states that the ratio of the resistances in the two arms of a balanced bridge is equal.
Let R be the resistance of the unknown resistor, then we have:
R/2.0 = (100 - 55.0)/55.0
Simplifying this expression, we get:
R = 2.0 x (100 - 55.0)/55.0
R = 1.64 ohms
Therefore, the value of the unknown resistor is 1.64 ohms.
Question 14 Report
Which of the following diagrams represents correctly an n-p-n transistor?
i.
Answer Details
Question 15 Report
Which of the following phenomena cannot be explained by the molecular theory of matter?
Answer Details
Conduction: the flow of internal energy from a region of higher temperature to lower temperature
Convection: heat transfer due to bulk movement of molecules within fluids
Expansion: the action of becoming larger or more extensive
Question 16 Report
Mercury which is spilled onto a glass surface forms ball-like shapes because____.
Answer Details
In case of small drops of mercury, the gravitational potential energy is negligible in comparison to the potential energy due to surface tension.Consequently, to keep the drop in equilibrium, the mercury drop’s surface tends to contract so that its surface area will be the least for a sphere and the drops will be spherical.
But in the case of bigger drops of mercury, the potential energy due to gravity is predominant over the potential energy due to surface tension.Consequently, to keep equilibrium , the mercury drop tends to assume minimum potential energy as possible, the drop becomes oval in shape and lower center of gravity.
Question 17 Report
The linear expansivity of brass is 2 x 10?5
C?1
. If the volume of a piece of brass is 15.00cm at 0°C, what is the volume at 100°C
Answer Details
The linear expansivity of brass is given as 2 x 10^-5 /°C. This means that for every 1°C increase in temperature, the brass expands by 2 x 10^-5 of its original size. To find the new volume of the brass at 100°C, we need to take into account the expansion in all three dimensions (length, width, and height). Since the expansivity given is for length only, we need to find the expansivity in all three dimensions by multiplying it by 3. The expansivity in all three dimensions is: 3 x (2 x 10^-5 /°C) = 6 x 10^-5 /°C To find the new volume, we can use the formula: Vf = Vi (1 + αΔT) where Vf is the final volume, Vi is the initial volume, α is the expansivity in all three dimensions, and ΔT is the change in temperature. Plugging in the values, we get: Vf = 15.00 cm3 (1 + (6 x 10^-5 /°C) x (100°C - 0°C)) Vf = 15.09 cm3 Therefore, the volume of the brass at 100°C is 15.09 cm3.
Question 18 Report
In the diagram given the hanging mass m2 is adjusted until m1 is on the verge of sliding. The coefficient of static
Answer Details
I think the correct option is C (m2m1 ). The coefficient of friction is a ratio of two forces and hence g will cancel out.
Question 19 Report
To keep a vehicle moving at a constant speed V requires power P from the engine. The force provided by the engine is
Answer Details
The force provided by the engine to keep a vehicle moving at a constant speed is proportional to the power (P) required from the engine. This power is proportional to the product of the speed (V) and force (P), so the relationship can be expressed as P = kV, where k is a proportionality constant.
Question 20 Report
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Answer Details
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Question 21 Report
A man hears his echo from a nearby hill 2s after he shouted. If the frequency of his voice is 260Hz and the wavelength is 1.29m, how far away is the hill
Answer Details
The speed of sound in air is approximately 343 meters per second at room temperature. The formula for the speed of sound is:
Speed of sound = Frequency × Wavelength
In this problem, we are given the frequency (260 Hz) and the wavelength (1.29 m) of the sound wave. We can use these values to calculate the speed of sound:
Speed of sound = 260 Hz × 1.29 m = 335.4 m/s
Next, we need to use the fact that the man hears his echo 2 seconds after he shouted. Since the sound wave traveled from the man to the hill and then back to the man, the total distance traveled by the sound wave is twice the distance from the man to the hill. We can use the formula:
Distance = Speed × Time
to calculate the distance from the man to the hill:
Distance = (335.4 m/s) × (2 s/2) = 335.4 m
Therefore, the hill is 335.4 meters away from the man. The answer is option (B), 335.4m.
Question 22 Report
A 20kg mass is to be pulled up a slope inclined at 300 to the horizontal. If efficiency of the plane is 75%. The force required to pull the load up the plane is J [g=10ms−2 ]
Answer Details
The force required to pull a 20kg mass up a slope inclined at 300 can be calculated using the formula: force = mass * gravity * sin(angle) where mass is 20kg, gravity is 10 m/s^2 and angle is 300. The formula for efficiency is: efficiency = output force / input force where output force is the force required to pull the mass up the slope and input force is the force applied to the rope. Since the efficiency of the plane is 75%, the input force is 4 times the output force. So, the output force can be calculated as: output force = input force / 4 input force = mass * gravity * sin(angle) / efficiency input force = 20 * 10 * sin(300) / 0.75 input force = 533.2 N And the output force can be calculated as: output force = input force / 4 output force = 533.2 / 4 output force = 133.3 N So, the force required to pull the load up the plane is 133.3 N.
Question 23 Report
Cathode rays are
Answer Details
Cathode rays are streams of electrons. They were first discovered by scientists experimenting with vacuum tubes, and they observed that a glowing beam of particles traveled from the negatively charged electrode (the cathode) to the positively charged electrode (the anode). These particles were found to have a negative charge, which was later identified as electrons. Cathode rays played an important role in the development of electronics and the understanding of atomic structure.
Question 24 Report
The tendency of a body to remain at rest when a force is applied to it is called.
Answer Details
The tendency of a body to remain at rest or to continue moving with a constant velocity (in a straight line at a constant speed) when no force is acting on it is called inertia. Inertia is a property of matter, and the amount of inertia depends on the mass of an object. Inertia can also be thought of as a resistance to changes in motion, meaning that an object at rest will tend to stay at rest, and an object in motion will tend to stay in motion unless acted upon by an external force. This property of inertia is what makes it difficult to start, stop, or change the direction of motion of an object. The force required to overcome the inertia of an object depends on the mass of the object and the magnitude of the acceleration desired. Therefore, the greater the mass of an object, the greater its inertia, and the more force required to change its motion.
Question 25 Report
What flows to the earth by connecting the conductor to the earth?
Answer Details
When a conductor is connected to the earth, electrons flow to the earth. Electrons are negatively charged particles that are present in all conductors. When a conductor is connected to the earth, it creates a path for electrons to flow from the conductor to the earth, which helps to balance the electric potential and prevent the buildup of electric charge. This flow of electrons is known as grounding and is an important safety measure in electrical systems.
Question 26 Report
Which of the following phenomena is the practical evidence for the existence of the continual motion of molecules.
Answer Details
Brownian motion is the practical evidence for the existence of the continual motion of molecules. This phenomenon is observed as the random movement of particles suspended in a fluid, such as a liquid or a gas, due to the constant bombardment of the fluid molecules. It was first described by the Scottish botanist Robert Brown in 1827 and provides strong evidence for the kinetic theory of matter, which states that all matter is made up of constantly moving particles. The random movement of the suspended particles can be observed through a microscope and is a direct result of the continual motion of the fluid molecules.
Question 27 Report
A narrow beam of white light can be split up into different colours by a glass prism. The correct explanation is that
Answer Details
The correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. White light is made up of different colors with different wavelengths, ranging from violet to red. When a narrow beam of white light passes through a glass prism, the different colors refract at slightly different angles due to the fact that their wavelengths are different. This causes the different colors to spread out and form a spectrum. The amount of refraction that occurs depends on the speed of light in the medium. Different colors of light have different speeds in glass due to the fact that their wavelengths are different. This means that they will refract at different angles as they pass through the glass prism, causing them to spread out. So, the correct explanation for why a narrow beam of white light can be split up into different colors by a glass prism is that different colors of white light travel with different speeds in glass. Therefore, is the correct explanation. is incorrect because it describes what white light is made up of, but does not explain how it is split up into colors by a prism. is incorrect because a prism does not have all the colors of white light, but rather it separates the colors that are already present in white light. is incorrect because total internal reflection occurs when light is completely reflected back into the same medium, which is not what happens when white light is split up by a prism.
Question 28 Report
Which of the following concepts is not an evidence of the particles nature of matter?
Answer Details
The particle nature of matter refers to the idea that matter is made up of tiny particles that are constantly moving. Diffusion, Brownian motion, and crystallization are all examples of phenomena that can be explained by the particle nature of matter. However, diffraction is not an evidence of the particle nature of matter. Diffraction is a phenomenon that occurs when waves encounter an obstacle or a slit, causing them to spread out and interfere with each other. While particles can also exhibit diffraction, this is a property of waves and is not specific to particles. In summary, diffusion, Brownian motion, and crystallization are all evidences of the particle nature of matter, but diffraction is not.
Question 29 Report
The process by which protons are converted into helium atoms with a tremendous release of energy is called?
Answer Details
The process by which protons are converted into helium atoms with a tremendous release of energy is called "thermonuclear fusion". In this process, two light atomic nuclei combine to form a heavier nucleus, releasing a huge amount of energy in the form of light and heat. This is the same process that powers the sun and other stars. The high temperatures and pressures required for fusion to occur can only be achieved in stars or in controlled environments such as fusion reactors. Thermonuclear fusion is different from nuclear fission, which is the process of splitting a heavy nucleus into lighter nuclei with the release of energy. Thermionic emission and photoelectric emission are different processes that involve the emission of electrons from a material due to heating or exposure to light, respectively.
Question 30 Report
An object moves in a circular path of radius 0.5m with a speed of 1ms−1 . What is its angular velocity?
Answer Details
Angular velocity is a measure of how fast an object is rotating around a center point. It's usually measured in radians per second (rad/s). To calculate angular velocity, we use the formula: angular velocity = linear velocity / radius. In this case, the linear velocity is 1 m/s, and the radius is 0.5 m. So, the angular velocity would be: 1 m/s / 0.5 m = 2 rad/s Therefore, the answer is 2 rad/s or 2rads^-1
Question 31 Report
A particle of mass M initially at rest splits into two. If one of the particles of mass M1 moves with velocity V1 , the second particle moves with velocity
Answer Details
When a particle of mass M splits into two, the total mass is conserved, and so the sum of the masses of the two resulting particles must be equal to M. If one of the particles of mass M1 moves with velocity V1, we can use the law of conservation of momentum to determine the velocity of the second particle. The law of conservation of momentum states that the total momentum of a system of particles remains constant if no external forces act on the system. In this case, the initial momentum of the system is zero, since the particle was initially at rest. After the particle splits, the momentum of the system is the sum of the momenta of the two resulting particles. Let's use the subscript 1 to represent the first particle of mass M1 and the subscript 2 to represent the second particle of mass M-M1. By conservation of momentum, we have: 0 = M1*V1 + (M - M1)*V2 Solving for V2, we get: V2 = -M1/M*(V1) Therefore, the second particle moves in the opposite direction with velocity -M1/M*(V1). This means that the two particles move in opposite directions, with the ratio of their velocities determined by the ratio of their masses. Option (D) in the table shows the correct answer, which is -M1/M*(V1).
Question 32 Report
Which of the following may be used to explain a mirage?
I. Layers of air near the road surface have varying refractive indices in hot weather
II. Road surfaces sometimes become good reflectors in hot weather
III. Light from the sky can be reflected upwards after coming close to the road surface.
Answer Details
The phenomenon of a mirage can be explained by options I and III. A mirage is an optical illusion that occurs when light rays passing through a medium with varying refractive indices create a false image of distant objects or even the sky. In hot weather, the air near the road surface becomes hotter and less dense than the air above, causing the light passing through it to bend and create a reflection of the sky or objects in the distance. This effect is known as a temperature inversion. Additionally, light from the sky can be reflected upwards after coming close to the road surface, adding to the illusion of a reflected object or the sky. Option II, which suggests that road surfaces become good reflectors in hot weather, is not a valid explanation for a mirage. Therefore, the correct answer is: I and III only.
Question 33 Report
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Answer Details
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Question 34 Report
A pulley system has three pulleys in the fixed block and two in the movable block and if the pulley has an efficiency of 72%, the mechanical advantage of the system is?
Answer Details
To make it easier understood
MA = E × Vr/100
Vr in a pulley system is the number of pulleys and in this case we have 5 (3 and 2)
So
MA = 72 × 5 = 360/100 = 3.6
Thanks
Question 35 Report
Temperature is the property of a body which is proportional to the ____.
Answer Details
Temperature is proportional to the average kinetic energy of the molecules in a body. This means that as the average kinetic energy of the molecules increases, so does the temperature. Think about it like this: the hotter an object, the more energy its molecules have. This energy is what makes the molecules move faster, and therefore, the temperature of the object increases. The average kinetic energy of the molecules is a better measure of temperature than the maximum speed of the molecules because temperature is a measure of the overall energy distribution, not just the energy of a single molecule.
Question 36 Report
A resistor connected to a 12V battery draws a current of 2A. The energy dispatched in the resistor in 5 minutes is ___.
Answer Details
To calculate the energy dispatched in the resistor, we need to use the formula: Energy = Power x Time Where Power is the amount of electrical power consumed by the resistor, and is equal to the product of the voltage across the resistor and the current flowing through it: Power = Voltage x Current In this case, the voltage across the resistor is 12V, and the current flowing through it is 2A. Therefore, the power consumed by the resistor is: Power = 12V x 2A = 24W Now, we can substitute this value of power along with the given time of 5 minutes into the formula for energy: Energy = 24W x 5min x 60s/min = 7,200J Therefore, the energy dispatched in the resistor in 5 minutes is 7,200J. is the correct answer.
Question 37 Report
The energy needed to move a unit positive charge around a complete electric circuit is called the
Answer Details
The energy needed to move a unit positive charge around a complete electric circuit is called the "electromotive force", also known as "emf". This is because the emf is what drives the flow of electric charge, or current, around the circuit. Think of it like a battery in a flashlight. The battery provides the emf that drives the flow of electric current through the wires and the light bulb. Without the emf from the battery, the electric charges wouldn't be able to flow and the light wouldn't turn on. The other answer options, such as electric potential difference and electric energy, are related to the emf but don't specifically refer to the energy needed to move a unit positive charge around a circuit. Kinetic energy, on the other hand, is not related to the movement of electric charges around a circuit at all.
Question 38 Report
Which of the following obeys Ohm's law?
Answer Details
Ohm's law states that the current passing through a conductor is directly proportional to the voltage applied across it, given the temperature and other physical conditions remain constant. Among the given options, only "all metals" obey Ohm's law. This is because metals have a linear relationship between their resistance and the applied voltage, meaning that the resistance of a metal remains constant regardless of the voltage applied. As a result, the current passing through a metal is directly proportional to the voltage applied, following Ohm's law. On the other hand, a diode, all electrolytes, and glass do not obey Ohm's law. A diode is a semiconductor that has a non-linear current-voltage relationship, and its resistance is not constant. Similarly, electrolytes and glass are non-metallic substances that do not have a linear relationship between their resistance and the applied voltage. Their resistance can change significantly with the voltage applied, and hence they do not follow Ohm's law.
Question 39 Report
A ball of mass 800g moving horizontally with a speed of 5m/s hits a vertical wall and rebounds with the same speed. The impulse experienced by the ball is?
Answer Details
The impulse experienced by the ball can be calculated using the principle of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision. In this case, the momentum of the ball before the collision is: p1 = m * v1 where m is the mass of the ball and v1 is its velocity before the collision. Substituting the values given in the problem, we get: p1 = 0.8 kg * 5 m/s = 4 kg m/s After the collision, the ball rebounds with the same speed but in the opposite direction, so its velocity after the collision is: v2 = -5 m/s The momentum of the ball after the collision is: p2 = m * v2 Substituting the values, we get: p2 = 0.8 kg * (-5 m/s) = -4 kg m/s The negative sign indicates that the direction of the momentum is opposite to that before the collision. The change in momentum of the ball is given by: Δp = p2 - p1 Substituting the values, we get: Δp = (-4 kg m/s) - (4 kg m/s) = -8 kg m/s The negative sign indicates that the impulse experienced by the ball is in the opposite direction to its initial momentum, which is the direction of the wall. Therefore, the impulse experienced by the ball is 8 kg m/s. Therefore, the correct option is: 8kgm/s.
Question 40 Report
A lens of focal length 15cm forms on erect image which is three times the size of the object. The distance between the object and the image is ___.
Answer Details
We can use the lens formula, 1/f = 1/v - 1/u, where f is the focal length of the lens, v is the distance between the lens and the image, and u is the distance between the lens and the object. From the problem, we know that the focal length of the lens is 15 cm, and the image is erect and three times the size of the object. This means that the image distance v is positive and the object distance u is negative (since the object is in front of the lens). Let's assume that the object distance u is -x cm, where x is a positive number. Then, the image distance v is +3x cm, since the image is three times the size of the object. Substituting these values into the lens formula, we get: 1/15 = 1/(+3x) - 1/(-x) Simplifying the right-hand side, we get: 1/15 = (1 + 3)/3x Multiplying both sides by 3x, we get: 3x/15 = 4 Simplifying, we get: x = 20 Therefore, the distance between the object and the lens is -20 cm (since it is in front of the lens), and the distance between the image and the lens is +60 cm (since it is behind the lens). The distance between the object and the image is the sum of these distances, which is: (-20) + (+60) = 40 cm Therefore, the answer is 40cm.
Would you like to proceed with this action?