Loading....
Press & Hold to Drag Around |
|||
Click Here to Close |
Question 1 Report
Shadows and eclipses result from the
Answer Details
The rectilinear propagation of light means that light travels in straight lines as a wave. This can be observed in the well-defined shadows formed when an object blocks a light source and through the use of a pinhole camera.
According to Sudipa Sarkar, the formation of shadows with sharp edges demonstrates the rectilinear propagation of light, i.e. The fact that light travels in straight line. When an opaque obstacle is placed between a source of light and a screen, a shadow of the obstacle is formed on the screen. The kind of shadow depends on the size of the source of light. If it is a point source (light from a small hole), the shadow obtained is a region of total darkness, called umbra.
If an extended source of light, e.g. a bulb, is used, the umbra is surrounded by a region of partial darkness, called penumbra. The moon is seen because it reflects the sun's light. An eclipse of the moon (lunar eclipse) occurs when the earth comes between the sun and the moon and prevents some of the light from the sun from reaching the moon. In other words, the earth casts its shadow on the moon. The solar eclipse occurs when the moon comes between the sun and the earth.
Question 2 Report
A resistor connected to a 12V battery draws a current of 2A. The energy dispatched in the resistor in 5 minutes is ___.
Answer Details
To calculate the energy dispatched in the resistor, we need to use the formula: Energy = Power x Time Where Power is the amount of electrical power consumed by the resistor, and is equal to the product of the voltage across the resistor and the current flowing through it: Power = Voltage x Current In this case, the voltage across the resistor is 12V, and the current flowing through it is 2A. Therefore, the power consumed by the resistor is: Power = 12V x 2A = 24W Now, we can substitute this value of power along with the given time of 5 minutes into the formula for energy: Energy = 24W x 5min x 60s/min = 7,200J Therefore, the energy dispatched in the resistor in 5 minutes is 7,200J. is the correct answer.
Question 3 Report
Palm oil from a bottle flows out more easily after it has been heated because the
Answer Details
Molecules cannot be given energy during the heating and the molecules of oil cannot force each other out
Question 4 Report
Which of the following best describes the energy changes which take place when a steam engine drives a generator which lights a lamp?
Answer Details
The energy changes that take place when a steam engine drives a generator which lights a lamp can be described as: Heat energy from burning fuel is used to create steam in the boiler of the steam engine. This steam is then used to drive the turbine, which generates kinetic energy as it spins. The kinetic energy is transferred to the generator, which converts it into electrical energy (electricity). The electricity then flows through the wires to the lamp, where it is converted back into light energy, which is what we see. Therefore, the correct option would be: Heat ----> Kinetic ----> Electricity ----> Light
Question 5 Report
Cathode rays are
Answer Details
Cathode rays are streams of electrons. They were first discovered by scientists experimenting with vacuum tubes, and they observed that a glowing beam of particles traveled from the negatively charged electrode (the cathode) to the positively charged electrode (the anode). These particles were found to have a negative charge, which was later identified as electrons. Cathode rays played an important role in the development of electronics and the understanding of atomic structure.
Question 6 Report
The diagram shown represents a block-and-tackle pulley system on which an effort of W Newtons supports a load of 120.0N. If the efficiency of the machine is 40, then the value of W is?
Answer Details
Let the total number of pulleys used in both the blocks be n
.
In a block-and-tackle pulley system, the velocity ratio is equal to n.
Efficiency = MAVR×100%
MA=LE,VR=n
Efficiency = LE×1n×100%
E=LEff.×n×100%
E=120N40%×6×100%
E=50N
Question 7 Report
A 40W instrument has a resistance 90 Ohms. On what voltage should it be operated normally
Answer Details
To calculate the voltage needed for a 40W instrument with a resistance of 90 Ohms, we can use the formula: Voltage = √(Power x Resistance) Plugging in the given values, we get: Voltage = √(40W x 90Ω) Voltage = √(3600) Voltage = 60V Therefore, the instrument should be operated at 60V to generate 40W of power with a resistance of 90 Ohms. The correct answer is, 60V.
Question 8 Report
Which of the following may be used to explain a mirage?
I. Layers of air near the road surface have varying refractive indices in hot weather
II. Road surfaces sometimes become good reflectors in hot weather
III. Light from the sky can be reflected upwards after coming close to the road surface.
Answer Details
The phenomenon of a mirage can be explained by options I and III. A mirage is an optical illusion that occurs when light rays passing through a medium with varying refractive indices create a false image of distant objects or even the sky. In hot weather, the air near the road surface becomes hotter and less dense than the air above, causing the light passing through it to bend and create a reflection of the sky or objects in the distance. This effect is known as a temperature inversion. Additionally, light from the sky can be reflected upwards after coming close to the road surface, adding to the illusion of a reflected object or the sky. Option II, which suggests that road surfaces become good reflectors in hot weather, is not a valid explanation for a mirage. Therefore, the correct answer is: I and III only.
Question 9 Report
Which of the following does NOT describe the Image formed by a plane minor?
Answer Details
The option that does NOT describe the image formed by a plane mirror is "Magnified". When an object is placed in front of a plane mirror, the image formed is: 1. Erect: The orientation of the object in the mirror is the same as the orientation of the object in real life. For example, if you raise your right hand in front of a plane mirror, the image in the mirror will also show your right hand raised. 2. Laterally inverted: The image formed in the mirror is flipped horizontally, which means that the left side of the object appears on the right side of the image and vice versa. For example, if you wear a shirt with the letter "H" on it and look at it in a plane mirror, the image will show the letter "H" flipped horizontally. 3. Same distance from the mirror as object: The image formed in the mirror is located behind the mirror at the same distance as the object is located in front of the mirror. For example, if you stand 1 meter away from a plane mirror, the image of yourself will also be located 1 meter away from the mirror, behind the mirror. 4. NOT magnified: The image formed in the plane mirror is of the same size as the object, which means that there is no magnification or reduction in the size of the image. For example, if you stand in front of a plane mirror with a height of 1 meter, the image of yourself in the mirror will also have a height of 1 meter. Therefore, the correct answer is "Magnified", as the image formed by a plane mirror is not magnified.
Question 10 Report
In the diagram given if the atmospheric pressure is 760mm, the pressure in the chamber G Is
Answer Details
Question 11 Report
One of the features of the fission process is that
Answer Details
The fission process refers to the splitting of an atomic nucleus into two or more smaller nuclei. One of the key features of the fission process is that it can lead to a chain reaction, where the neutrons released during fission can go on to trigger additional fission reactions. This chain reaction can produce a large amount of energy, as is the case in nuclear power plants and nuclear weapons. Another feature of the fission process is that it typically produces radioactive products. These products can remain radioactive for a long time, which is why there are concerns about the safe disposal of nuclear waste. Additionally, the fission process typically releases neutrons, which can go on to cause further fission reactions. This neutron release is an important aspect of the chain reaction mentioned earlier. Finally, the fission process is accompanied by a small loss of mass, which is converted into energy according to Einstein's famous equation E=mc². This loss of mass is what allows the large amount of energy to be released during a fission reaction.
Question 12 Report
In homes, electrical appliances and lamps are connected in parallel because
Answer Details
Question 13 Report
What flows to the earth by connecting the conductor to the earth?
Answer Details
When a conductor is connected to the earth, electrons flow to the earth. Electrons are negatively charged particles that are present in all conductors. When a conductor is connected to the earth, it creates a path for electrons to flow from the conductor to the earth, which helps to balance the electric potential and prevent the buildup of electric charge. This flow of electrons is known as grounding and is an important safety measure in electrical systems.
Question 14 Report
If the focal length of a camera is 20cm, the distance from the film at which the lens must be set to produce a sharp image of 100cm away is
Answer Details
F = 20cm
V = 100cm
U = ?
1U
+ 1V
= 1F
120
+ 1100
= 1F
5+1100
= 1F
F = 1006
= 16.7cm
= 17cm
Question 15 Report
The force between the molecules of a liquid in contact with that of a solid is?
Answer Details
(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the molecules of different liquids or between the molecules of a liquid and those of a solid body when they are in contact with each other, is known as the force of adhesion. This force enables two different liquids to adhere to each other or a liquid to adhere to a solid body or surface.
Question 16 Report
To keep a vehicle moving at a constant speed V requires power P from the engine. The force provided by the engine is
Answer Details
The force provided by the engine to keep a vehicle moving at a constant speed is proportional to the power (P) required from the engine. This power is proportional to the product of the speed (V) and force (P), so the relationship can be expressed as P = kV, where k is a proportionality constant.
Question 17 Report
The friction which exist between two layers of liquid in relative motion is called
Answer Details
The correct answer is "Viscosity". Viscosity is the property of a fluid that describes its resistance to flow. When two layers of liquid are in relative motion, the viscosity of the liquid causes friction between the layers. This friction creates a resistance to the movement of one layer past the other. The greater the viscosity of the liquid, the greater the friction and the more difficult it is for the layers to move past each other. This property is important in many industrial and natural processes, such as the flow of oil in pipelines or the movement of blood through the human body.
Question 18 Report
An object moves in a circular path of radius 0.5m with a speed of 1ms−1 . What is its angular velocity?
Answer Details
Angular velocity is a measure of how fast an object is rotating around a center point. It's usually measured in radians per second (rad/s). To calculate angular velocity, we use the formula: angular velocity = linear velocity / radius. In this case, the linear velocity is 1 m/s, and the radius is 0.5 m. So, the angular velocity would be: 1 m/s / 0.5 m = 2 rad/s Therefore, the answer is 2 rad/s or 2rads^-1
Question 19 Report
A solid weighs 45N and 15N respectively in air and water. Determine the relative density of the solid
Answer Details
The relative density of a substance is defined as the ratio of its density to the density of a reference substance, usually water at 4 degrees Celsius. In this problem, we can use the principle of buoyancy to determine the density of the solid. When an object is submerged in a fluid, it experiences an upward force called the buoyant force, which is equal to the weight of the fluid displaced by the object. If the object is less dense than the fluid, it will float, and if it is more dense, it will sink. We are given that the solid weighs 15 N in water, which means it displaces 15 N of water. The weight of the water displaced is equal to the buoyant force on the solid, which is equal to the weight of the solid when it is completely submerged in water. Therefore, the weight of the solid when it is completely submerged in water is 15 N. We are also given that the weight of the solid in air is 45 N. The difference between the weight of the solid in air and water is equal to the weight of the water displaced, which is 30 N. This means that the volume of water displaced by the solid is 30/9.8 = 3.06 L (since the density of water is 1000 kg/m^3 or 9.8 N/L). The relative density of the solid is equal to its density divided by the density of water. We can find the density of the solid by dividing its weight in air by its volume: Density of solid = Weight of solid in air / Volume of solid Density of solid = 45 N / (45 N - 15 N) [since weight of displaced water is 15N] Density of solid = 45 N / 30 N Density of solid = 1.5 N/L Therefore, the relative density of the solid is: Relative density = Density of solid / Density of water Relative density = 1.5 N/L / 1000 N/L Relative density = 0.0015 So the answer is 0.33 (rounded to two decimal places).
Question 20 Report
Musical instruments playing the same note can be distinguished from one another owing to the difference in their
Answer Details
Different musical instruments playing the same note can be distinguished from one another due to the difference in their "timbre" or "tone color." Timbre refers to the unique character or quality of a sound that allows us to distinguish it from other sounds even when they have the same pitch and loudness. For example, a piano and a guitar playing the same note will sound different due to the differences in their timbre. This is why we can tell the difference between different instruments and why some instruments are better suited to certain styles of music than others.
Question 21 Report
In the diagram given the hanging mass m2 is adjusted until m1 is on the verge of sliding. The coefficient of static
Answer Details
I think the correct option is C (m2m1 ). The coefficient of friction is a ratio of two forces and hence g will cancel out.
Question 22 Report
The efficiency of energy conversion on the energy flow through a hydroelectric power is?
Answer Details
Efficiency = useful energy output from machineenergy input into machine
= E3E2
Question 23 Report
A positively charged rod X is brought near an uncharged metal sphere Y and is then touched by a finger with X still in place. When the finger is removed, the result is that Y has
Answer Details
Question 24 Report
In the diagram shown, If the south-poles of two magnets stroke a steel bar, the polarities at T and V will respectively be
Answer Details
Question 25 Report
The amount of heat needed to raise the temperature of 10kg of Copper by 1K is its
Answer Details
The correct answer is "specific heat capacity." Specific heat capacity is a measure of how much heat energy is required to raise the temperature of a certain amount of a substance by 1 degree Celsius (or 1 Kelvin, which is the same size as 1 degree Celsius). In this case, we are dealing with 10kg of copper, so we need to know the specific heat capacity of copper. The specific heat capacity of copper is 0.385 J/g°C (joules per gram per degree Celsius). To calculate the amount of heat needed to raise the temperature of 10kg of copper by 1K, we need to know the total mass of copper (10kg) and the specific heat capacity of copper (0.385 J/g°C). The formula for calculating the amount of heat energy required is: Heat energy = mass x specific heat capacity x change in temperature Since we want to raise the temperature by 1K, the change in temperature is 1K. So, the amount of heat energy required to raise the temperature of 10kg of copper by 1K is: Heat energy = 10kg x 0.385 J/g°C x 1K = 3.85 kJ Therefore, it takes 3.85 kilojoules (kJ) of heat energy to raise the temperature of 10kg of copper by 1K.
Question 26 Report
Temperature is the property of a body which is proportional to the ____.
Answer Details
Temperature is proportional to the average kinetic energy of the molecules in a body. This means that as the average kinetic energy of the molecules increases, so does the temperature. Think about it like this: the hotter an object, the more energy its molecules have. This energy is what makes the molecules move faster, and therefore, the temperature of the object increases. The average kinetic energy of the molecules is a better measure of temperature than the maximum speed of the molecules because temperature is a measure of the overall energy distribution, not just the energy of a single molecule.
Question 27 Report
In the diagram shown, which of the simple pendulum will resonate with P when set into oscillation?
Answer Details
Question 28 Report
In a series R-L-C circuit at resonance, the voltages across the resistor and the inductor are 30V and 40V respectively. What is the voltage across the capacitor?
Answer Details
Question 29 Report
The pitch of an acoustic device can be increased by
Answer Details
The pitch of an acoustic device refers to the perceived highness or lowness of a sound, and is determined by the frequency of the sound wave. To increase the pitch of an acoustic device, you need to increase the frequency of the sound wave. This can be done by increasing the number of vibrations per second that the device produces. So, the correct answer is to "increase the frequency".
Question 30 Report
Calculate the effective capacitance of the circuit in the diagram given
Answer Details
The three 2uf capacitors are in parallel to each other so u add them like this
2uf+2uf+2uf=6uf
So u have three capacitors in series
6uf 2uf and 3uf
They are in series so
1/C= 1/6+1/3=1/2
C=2uf
Then the same thing with the last two capay
1/2+1/2=1uf
Thanks
Question 31 Report
Which of the following phenomena cannot be explained by the molecular theory of matter?
Answer Details
Conduction: the flow of internal energy from a region of higher temperature to lower temperature
Convection: heat transfer due to bulk movement of molecules within fluids
Expansion: the action of becoming larger or more extensive
Question 32 Report
The differences observed in solids, liquids and gases may be accounted for by
Answer Details
The differences observed in solids, liquids, and gases can be accounted for by the spacing and forces acting between the molecules. In a solid, the molecules are packed closely together, so they have a fixed shape and volume. The intermolecular forces are strong enough to keep the molecules in a fixed position relative to one another. In a liquid, the molecules are still close together, but they are free to move around each other. The intermolecular forces are weaker than in a solid, so the molecules can slide past one another, giving the liquid its ability to flow and take the shape of its container. In a gas, the molecules are widely spaced and are in constant motion. The intermolecular forces are very weak, so the molecules are free to move around and fill any available space. Gases have no fixed shape or volume. So, the differences observed in solids, liquids, and gases can be explained by the spacing and forces acting between the molecules. It's not about their relative masses, melting points, or the different molecules in each of them.
Question 33 Report
A room is heated by means of a charcoal fire, an occupants of the room standing away from the fire is warmed mainly by
Answer Details
The main way that the occupants of a room standing away from a charcoal fire are warmed is by radiation. Radiation is the transfer of heat energy through electromagnetic waves, and it can travel through empty space. In this scenario, the charcoal fire emits radiation in the form of infrared waves, which travel through the air and warm up the objects (including the occupants) in the room. Convection, on the other hand, is the transfer of heat through the movement of fluids (such as air), but in this case, the air in the room is not being actively circulated by a fan or other mechanism. Conduction involves the transfer of heat through direct contact between two objects, but the occupants are not in direct contact with the fire. Reflection refers to the bouncing of radiation off a surface, but it is not a significant factor in this scenario as most of the radiation is absorbed by the objects in the room.
Question 34 Report
An object is placed 20cm from a concave mirror of focal length 10cm. The linear magnification of the image produced is?
Answer Details
The linear magnification of an image is given by the formula: magnification = height of image / height of object = -v/u where v is the image distance, u is the object distance, and the negative sign indicates that the image is inverted. In this problem, the object is placed 20cm from a concave mirror of focal length 10cm. Since the object is placed beyond the focal point, the image will be real and inverted. Using the mirror formula 1/f = 1/v + 1/u, we can find the image distance v: 1/10 = 1/v + 1/20 Solving for v, we get: v = -20 cm Now, we can use the magnification formula to find the linear magnification: magnification = -v/u = -(-20)/20 = 1 Therefore, the linear magnification of the image produced is 1, which means the image is the same size as the object and is also inverted. The answer is: 1.
Question 35 Report
A solid cube of side 50cm and mass 75kg floats in a liquid with 13 of its height above the liquid surface. The relative density of the liquid is?
Answer Details
Volume of liquid displaced
= 23
(0.5)3
Mass of liquid displaced = mass of floating cube = 75kg
Density of liquid = massvolume
= 75(73(0.5))
× 3
= 0.9 × 103kgm−3
R.D of liquid = (0.9)(1.0)
× 103
= 0.9
Question 36 Report
Natural radioactivity consists of the emission of
Answer Details
Radioactive decay releases different types of energetic emissions. The three most common types of radioactive emissions are alpha particles, beta particles, and gamma rays.
Question 37 Report
A 20kg mass is to be pulled up a slope inclined at 300 to the horizontal. If efficiency of the plane is 75%. The force required to pull the load up the plane is J [g=10ms−2 ]
Answer Details
The force required to pull a 20kg mass up a slope inclined at 300 can be calculated using the formula: force = mass * gravity * sin(angle) where mass is 20kg, gravity is 10 m/s^2 and angle is 300. The formula for efficiency is: efficiency = output force / input force where output force is the force required to pull the mass up the slope and input force is the force applied to the rope. Since the efficiency of the plane is 75%, the input force is 4 times the output force. So, the output force can be calculated as: output force = input force / 4 input force = mass * gravity * sin(angle) / efficiency input force = 20 * 10 * sin(300) / 0.75 input force = 533.2 N And the output force can be calculated as: output force = input force / 4 output force = 533.2 / 4 output force = 133.3 N So, the force required to pull the load up the plane is 133.3 N.
Question 38 Report
What effort will a machine of efficiency 90% apply to a load of 180N if its efforts arm is twice as long as its load arm?
Answer Details
Question 39 Report
Which of the following is an essential physical property of the wires uses for making fuses ?
Answer Details
The essential physical property of the wire used for making fuses is low melting point. This means that the wire should have a low temperature at which it melts and breaks, interrupting the flow of electrical current. This is important in a fuse because when there is an overload of electrical current, the wire will melt, breaking the circuit and preventing damage to the electrical system. The other options, low density, low electrical resistivity, and hypothermal conductivity, are not as important for a fuse wire. Low density is the property of a material to be light, and it doesn't necessarily affect the performance of a fuse wire. Low electrical resistivity is the property of a material to have low resistance to the flow of electrical current, and it doesn't necessarily affect the performance of a fuse wire either. Hypothermal conductivity is the property of a material to conduct heat poorly, and it also doesn't necessarily affect the performance of a fuse wire.
Question 40 Report
Which of the following is the dimension of pressure
Answer Details
The dimension of pressure is ML-1T-2 Pressure is defined as the force per unit area. This means that pressure is dependent on the force applied and the area over which it is applied. The unit of force is measured in Newtons (N), and the unit of area is measured in square meters (m2). Therefore, the unit of pressure is N/m2, which is also known as Pascals (Pa). To determine the dimension of pressure, we need to break down the units into their fundamental dimensions of mass (M), length (L), and time (T). Force is measured in N, which is kg m/s2. Area is measured in m2, which is L2. Therefore, the dimension of pressure can be calculated as (kg m/s2)/(L2), which simplifies to ML-1T-2.
Would you like to proceed with this action?